Question
1. Determine whether each statement below describes a continuous variable or a discrete variable. a) The length of your nails. b) The number of badminton
1. Determine whether each statement below describes a continuous variable or a discrete variable.
a) The length of your nails. b) The number of badminton games in one week. c) The number of petals on a flower.
2. Determine the type of distribution for the following examples. a) The probability that a client buys 10 used books and 3 of them have a torn page.
b) A teacher has calculated that 95% of the answers at the back of the textbook used in their class are correct. What is the probability that a student finds the first incorrect answer after checking their 25th answer?
c) Selecting one card that is a spade out of a standard deck of cards.
3. Ms. Smart needs to buy 3 pastries for tonight's dinner from the local bakery. The bakery has 4 cannoli, 3 tartlets and 6 cupcakes left.
a) Calculate the probability distribution for the number of tartlets that Ms. Smart might buy. Show the mathematical formula AND the answer.
b) What is the expected number of tartlets that Ms. Smart will get?
4.The probability that Zain eats an apple at lunch is 0.25.
a) Calculate the probability that they will eat an apple 10 times next month (May)?
b) How many times is Zain expected to eat an apple next month?
c) Calculate the probability that they will eat an apple for the first time next month on the 9th day?
5. Two cards are drawn from a standard deck of cards without replacing them. Calculate the probability of drawing two ace cards.
6. Explain why the following statements are incorrect.
a) The probability that the Blue Jays baseball team wins a game is 0.4. Therefore the probability that they lose a game is 0.6.
b) There are 8 grades at the local public school. Therefore the probability of randomly selecting a student from the first grade is 1/8.
7. A game which consists of rolling two dice has the following rules: if a sum greater than 10 is rolled, the player wins $4. If exactly one 2 is rolled, the player wins $3. If two 1s are rolled, the player wins $10. The cost of playing the game is $5. a) Identify the random variable.
b) Determine the probability of all outcomes.
c) Calculate the expected profit/loss for each game.
8. A school raffle has been organized by the student council. They have 10 prizes to give away. They also put a winning raffle ticket "back in the bag" which means that a student can win multiple times. If the odds of winning a prize are 2:25, what is the probability that a student wins their first prize on the 5th draw?
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started