Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

1. Evaluate the grand-canonical partition function of a gas of indistinguishable, non-interacting relativistic particles contained in a volume V. (The relativistic dispersion relation (i.c. en-

image text in transcribed
image text in transcribed
1. Evaluate the grand-canonical partition function of a gas of indistinguishable, non-interacting relativistic particles contained in a volume V. (The relativistic dispersion relation (i.c. en- ergy) is c = cp[). Find E, P, N. Finally, find the equation of state in terms of P, V,N, T. How does it compare with your results from HW3? 2. Consider a system of identical but distinguishable particles, each of which has two states, with energies c and -c. Calculate: (i) the microcanonical partition function ?(#) of a system of N such particles with total fixed energy E; (ii) the canonical partition function of a system of N such particles, the total average energy (E), and the average energy per particle; (iii) the grand-canonical partition function, the average number of particles (N) = Noc, the total average energy (F)ac (express it in terms of Noc, #) and the average energy per particle, that is (F)ec/Noc; (iv) Entropy: a) calculate the entropy in the microcanonical ensemble. Use Stirling approx- imation to simplify factorials and express Sme in terms of = = E/(Nc) and N only. b) Find the entropy S, in the canonical ensemble and express it in terms of z = (E),/(Nc) and N only. Under which condition Sme ~ 5,? c) Finally, calculate the entropy Sag in the grand-canonical ensemble and express it in terms of = = ()cc/(Noct) and Noc only. In order to do so express Zac in terms of Noc and then invert the expression for Nog to get Ap in terms of Noc, I. How does Sac compare to S, Sme? Under which condition they will be equivalent? 3. Consider a system of N identical but distinguishable particles, each of which has two energy levels with energy 0 and c > 0. The upper energy level has a g-fold degeneracy while the lower level is non-degenerate. The total energy of the system is E. Using the microcanonical ensemble, calculate the entropy and find the occupation numbers n, and no in terms of the temperature of the system. (n, corresponds to the upper level, no to the lower one). Again use Stirling approximation. (Hint: # =nc) 4. A "lattice gas" consists of a lattice of N sites, cach of which can be empty, in which case its energy is zero, or occupied by one particle, in which case its energy is c. Each particle has a magnetic moment of magnitude m, which in the presence of an external magnetic field H can adopt two orientations, parallel or antiparallel to the field. Therefore, in the presence of an external magnetic field, the energy at each site is cither 0 or E = (c -mis), with s = -1, H1. So there is a total of three energy levels corresponding to three different states. i) Find the canonical partition function for this system. ii) Evaluate the average energy and magnetization M of the system. (M= (apin ) 8 log Z we will learn this later in the course)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Introduction to Elementary Particle Physics

Authors: Alessandro Bettini

2nd edition

1107050405, 978-1107050402

More Books

Students also viewed these Physics questions

Question

Which of the following is equivalent to the expression? ++2

Answered: 1 week ago

Question

8. What values do you want others to associate you with?

Answered: 1 week ago