Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

1. Find the minimum sample size needed to estimate the percentage of engineers who have a child. Use a 0.07 margin of error, use a

1. Find the minimum sample size needed to estimate the percentage of engineers who have a child. Use a 0.07 margin of error, use a confidence level of 99.8%, and use the results from a prior Harris poll that gave a confidence interval of (0.45, 0.54) for the proportion of engineers who have a child.

  • 423
  • 30
  • 3
  • 488
  • None of these

2. A sample of 60 statistics classes yields a mean class size of xx = 18.1 students with a standard deviation of s = 8.4 students. The 99% confidence interval estimate for the population mean is:

  • 15.21 students
  • 15.31 students
  • 15.51 students
  • 16.29 students
  • 16.32 students

3. What is the minimum sample size needed to estimate the mean age of books in a library to within 16 months with 99% confidence if the standard deviation of the ages is thought to be about 130 months?

  • 361
  • 19
  • 439
  • 21
  • None of these

4. Captopril is a drug designed to lower systolic blood pressure. When subjects were tested with this drug, their systolic blood pressure readings were measured before and after drug treatment, with the results given below. Assume an approximately normal distribution, if necessary. Use the sample data to construct a 95% confidence interval for the mean difference between the before and after readings.

SubjectABCDEF
Before174150150204161194
After150154179154146145

  • -7.1
  • -14.7
  • -7.1
  • -7.8
  • -6.2

5. A hypothesis test yields a test statistic of z = 1.55. Compute the P-value if this is a one-tailed test and if it is a two-tailed test.

  • one-tailed P-value is 0.9394; and two-tailed P-value is 1.8788
  • one-tailed P-value is 0.9394; and two-tailed P-value is 0.4697
  • one-tailed P-value is 0.0606; and two-tailed P-value is 0.0303
  • one-tailed P-value is 0.0606; and two-tailed P-value is 0.1212

6. When testing the claim that the mean of the differences is greater than zero, suppose you get a test statistic of t = 4.17 and a P-value of 0.0001. What should we conclude about the claim?

  • There is not sufficient evidence to warrant rejection of the claim.
  • There is not sufficient evidence to support the claim.
  • There is sufficient evidence to support the claim.
  • There is sufficient evidence to warrant rejection of the claim.

7. The manager of Riverside Bottling Corporation claims that her company is filling bottles with one quart (32 ounces) of juice. She randomly selects 38 of these bottles, measures their content, and obtains a mean of 31.78 oz. and a standard deviation of 0.81 oz.

Find the value of the test statistic and critical value(s) for testing the manager's claim at the ?? = 0.02 level.

  • test statistic t = -1.674, critical values 2.129
  • test statistic t = -1.674, critical values 2.431
  • test statistic z = -1.674, critical values 2.054
  • test statistic z = -1.674, critical values 2.326

8.

image text in transcribedimage text in transcribedimage text in transcribed
A simple random sample of 39 four-cylinder cars and a simple random sample of 32 six-cylinder cars is obtained. When using the samples below to test the claim that the mean braking distance of four-cylinder cars is at least as long as the mean braking distances of six-cylinder cars, find the alternative hypothesis. Four-cylinder Six-cylinder n1 = 39 n2 = 32 T1 = 138 ft T2 = 139.8 ft S1 = ft $7 = ft OH1: /1 - 12 0A researcher would like to test the claim that the proportion of middle-aged smokers with a lung capacity under 3 liters is less than the proportion of senior citizen nonsmokers with a lung capacity under 3 liters. A random sample of 32 middle-aged smokers had 25 with lung capacities under 3 liters, and a random sample of 32 senior citizen nonsmokers had 17 with lung capacities under 3 liters. These two independent samples will be used in a hypothesis test of this claim. Which test statistic formula should be used for this test? d_#d 0t: i V- Ot [571572){#1#2) 32 5% Eln2 Oz_(57152)_l#1H2) 012 0% \"7+5 Oz- (331132)_lP1P2) E rT1+ E n2 0 None of the above A study is done to determine, at the 20% level of significance, if traffic accidents occur with equal frequency throughout the week. Of the 350 accidents pulled from the files, the distribution of observed traffic accidents is shown below. DAY OF THE WEEK NUMBER OF ACCIDENTS Sunday 78 Monday 85 Tuesday 63 Wednesday 47 Thursday 22 Friday 29 Saturday 26 What is the value of the test statistic for a Goodness-of-Fit/Multinomial test? O 100.334 O 8.558 O 9.803 O 61.394 O 79.760

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

College Algebra Enhanced With Graphing Utilities (Subscription)

Authors: Michael Sullivan, Michael Sullivan III

6th Edition

0321849167, 9780321849168

More Books

Students also viewed these Mathematics questions