Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

# 1 . Histogram for Ageyears plt . hist ( data [ ' Ageyears ' ] , bins = 1 0 , edgecolor = 'black'

# 1. Histogram for Ageyears
plt.hist(data['Ageyears'], bins=10, edgecolor='black')
plt.xlabel('Age in Years')
plt.ylabel('Frequency')
plt.title('Distribution of Ages')
plt.show()
# 2. Boxplot for Travel_Time by Region
sns.boxplot(x='Region', y='Travel_Time', data=data)
plt.xlabel('State')
plt.ylabel('Travel Time to School (Minutes)')
plt.title('Travel Time by State')
plt.show()
# 3. Pie Chart for Region
region_counts = data['Region'].value_counts()
plt.pie(region_counts, labels=region_counts.index, autopct='%1.1f%%', startangle=90)
plt.title('Proportion of Responses by State')
plt.show()
# 4. Bar Chart for Vegetarian
vegetarian_counts = data['Vegetarian'].value_counts()
plt.bar(vegetarian_counts.index.astype(str), vegetarian_counts)
plt.xlabel('Vegetarian')
plt.ylabel('Count')
plt.title('Count of Vegetarians vs. Non-Vegetarians')
plt.show()
Final Notes
Data Preparation: Make sure your dataset (`census_data.csv`) is properly formatted and contains the required variables: `Ageyears`,`Travel_Time`,`Region`, and `Vegetarian`.
Library Installation: If you need to install the libraries, you can use pip: ``` pip install pandas matplotlib seaborn ```
By running this code, you will generate the desired histograms, boxplots, pie charts, and bar charts for your data analysis.# 1. Histogram for Ageyears
plt.hist(data['Ageyears'], bins=10, edgecolor='black')
plt.xlabel('Age in Years')
plt.ylabel('Frequency')
plt.title('Distribution of Ages')
plt.show()
# 2. Boxplot for Travel_Time by Region
sns.boxplot(x='Region', y='Travel_Time', data=data)
plt.xlabel('State')
plt.ylabel('Travel Time to School (Minutes)')
plt.title('Travel Time by State')
plt.show()
# 3. Pie Chart for Region
region_counts = data['Region'].value_counts()
plt.pie(region_counts, labels=region_counts.index, autopct='%1.1f%%', startangle=90)
plt.title('Proportion of Responses by State')
plt.show()
# 4. Bar Chart for Vegetarian
vegetarian_counts = data['Vegetarian'].value_counts()
plt.bar(vegetarian_counts.index.astype(str), vegetarian_counts)
plt.xlabel('Vegetarian')
plt.ylabel('Count')
plt.title('Count of Vegetarians vs. Non-Vegetarians')
plt.show()
Final Notes
Data Preparation: Make sure your dataset (`census_data.csv`) is properly formatted and contains the required variables: `Ageyears`,`Travel_Time`,`Region`, and `Vegetarian`.
Library Installation: If you need to install the libraries, you can use pip: ``` pip install pandas matplotlib seaborn ```
By running this code, you will generate the desired histograms, boxplots, pie charts, and bar charts for your data analysis.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Object Databases The Essentials

Authors: Mary E. S. Loomis

1st Edition

020156341X, 978-0201563412

More Books

Students also viewed these Databases questions

Question

4. Are there any disadvantages?

Answered: 1 week ago

Question

3. What are the main benefits of using more information technology?

Answered: 1 week ago

Question

start to review and develop your employability skills

Answered: 1 week ago