Answered step by step
Verified Expert Solution
Question
1 Approved Answer
4. Despite warnings of your statistics professor, you decide to gamble every month in two inde- pendent lotteries. Your strategy is to stop playing as
4. Despite warnings of your statistics professor, you decide to gamble every month in two inde- pendent lotteries. Your strategy is to stop playing as soon as you win a prize of at least $1 million in at least one of the two lotteries. Suppose that every time you play in these two lotteries, the probabilities of winning $1 million are 301 and 332, respectively. Let T be the number of times you play until winning at least one prize. (a) What is the distribution of T and what is/ are its parameter(s)? (b) What is the expected numer of times you need to play until you win at least one prize? (0) Suppose p1 = 1 /292, 201,338 (US Powerball) and p2 = 1/302,575, 350 (US Mega Mil- lions). If lottery tickets for both lotteries cost $10, what is the expected pay-off of your gambling strategy? (Hint: Use your answer to part (b). Also: You will realize that you will not want to actually implement your gambling strategy.)
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started