Question
6.26 Each morning between 6:30AM and 8:00AM Bill leaves the Melbourne suburb of Carnegie to drive to work at the University of Melbourne. The time
"6.26 Each morning between 6:30AM and 8:00AM Bill leaves the Melbourne suburb of Carnegie to drive to work at the University of Melbourne. The time it takes Bill to drive to work (TIME), depends on the departure time (DEPART), the number of red lights that he encounters (REDS), and the number of trains that he has to wait for at the Murrumbeena level crossing (TRAINS). Observations on these variables for the 249 working days in 2015 appear in the data file commute5. TIME is measured in minutes. DEPART is the number of minutes after 6:30AM that Bill departs.
Consider the equation
TIME=1+2DEPART+3REDS+4TRAINS+e
and suppose assumptions MR1-MR5 hold.
a) Test the following joint hypotheses using a 5% significance level:
i) The expected delay from a red light is 1.8 minutes and the expected delay from a train is 3.2 minutes.
ii) The expected delay from a red light is 2 minutes and the expected delay from a train is 3 minutes.
iii) The expected delay from a train is 3.5 minutes and the delay from a train is double that from a red light.
iv) The expected delay from a train is 3.5 minutes and the delay from a train is double that from a red light and leaving at 7:30AM instead of 7:00AM makes the trip 10 minutes longer.
b) Bill suspects that the later he leaves, the more likely he is to encounter a train. Test this hypothesis at a 5% significance level using estimates from the model.
ETRAINS|DEPART,REDS=1+2DEPART+3REDS
Is there any evidence of a relationship between the number of trains and the number of red lights? "
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started