Question
A cheese processing company wants to estimate the mean cholesterol content of allone-ounce servings of a type of cheese. The estimate must be within 0.72
A cheese processing company wants to estimate the mean cholesterol content of allone-ounce servings of a type of cheese. The estimate must be within 0.72 milligram of the population mean.
(a) Determine the minimum sample size required to construct a 95% confidence interval for the population mean. Assume the population standard deviation is 3.04 milligrams.
(b) The sample mean is 30 milligrams. Using the minimum sample size with a 95% level ofconfidence, does it seem likely that the population mean could be within 3% of the samplemean? within 0.3% of the samplemean? Explain.
page 1:
z
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00
3.4
0.0002
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
3.3
0.0003
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0005
0.0005
0.0005
3.2
0.0005
0.0005
0.0005
0.0006
0.0006
0.0006
0.0006
0.0006
0.0007
0.0007
3.1
0.0007
0.0007
0.0008
0.0008
0.0008
0.0008
0.0009
0.0009
0.0009
0.0010
3.0
0.0010
0.0010
0.0011
0.0011
0.0011
0.0012
0.0012
0.0013
0.0013
0.0013
2.9
0.0014
0.0014
0.0015
0.0015
0.0016
0.0016
0.0017
0.0018
0.0018
0.0019
2.8
0.0019
0.0020
0.0021
0.0021
0.0022
0.0023
0.0023
0.0024
0.0025
0.0026
2.7
0.0026
0.0027
0.0028
0.0029
0.0030
0.0031
0.0032
0.0033
0.0034
0.0035
2.6
0.0036
0.0037
0.0038
0.0039
0.0040
0.0041
0.0043
0.0044
0.0045
0.0047
2.5
0.0048
0.0049
0.0051
0.0052
0.0054
0.0055
0.0057
0.0059
0.0060
0.0062
2.4
0.0064
0.0066
0.0068
0.0069
0.0071
0.0073
0.0075
0.0078
0.0080
0.0082
2.3
0.0084
0.0087
0.0089
0.0091
0.0094
0.0096
0.0099
0.0102
0.0104
0.0107
2.2
0.0110
0.0113
0.0116
0.0119
0.0122
0.0125
0.0129
0.0132
0.0136
0.0139
2.1
0.0143
0.0146
0.0150
0.0154
0.0158
0.0162
0.0166
0.0170
0.0174
0.0179
2.0
0.0183
0.0188
0.0192
0.0197
0.0202
0.0207
0.0212
0.0217
0.0222
0.0228
1.9
0.0233
0.0239
0.0244
0.0250
0.0256
0.0262
0.0268
0.0274
0.0281
0.0287
1.8
0.0294
0.0301
0.0307
0.0314
0.0322
0.0329
0.0336
0.0344
0.0351
0.0359
1.7
0.0367
0.0375
0.0384
0.0392
0.0401
0.0409
0.0418
0.0427
0.0436
0.0446
1.6
0.0455
0.0465
0.0475
0.0485
0.0495
0.0505
0.0516
0.0526
0.0537
0.0548
1.5
0.0559
0.0571
0.0582
0.0594
0.0606
0.0618
0.0630
0.0643
0.0655
0.0668
1.4
0.0681
0.0694
0.0708
0.0721
0.0735
0.0749
0.0764
0.0778
0.0793
0.0808
1.3
0.0823
0.0838
0.0853
0.0869
0.0885
0.0901
0.0918
0.0934
0.0951
0.0968
1.2
0.0985
0.1003
0.1020
0.1038
0.1056
0.1075
0.1093
0.1112
0.1131
0.1151
1.1
0.1170
0.1190
0.1210
0.1230
0.1251
0.1271
0.1292
0.1314
0.1335
0.1357
1.0
0.1379
0.1401
0.1423
0.1446
0.1469
0.1492
0.1515
0.1539
0.1562
0.1587
0.9
0.1611
0.1635
0.1660
0.1685
0.1711
0.1736
0.1762
0.1788
0.1814
0.1841
0.8
0.1867
0.1894
0.1922
0.1949
0.1977
0.2005
0.2033
0.2061
0.2090
0.2119
0.7
0.2148
0.2177
0.2206
0.2236
0.2266
0.2296
0.2327
0.2358
0.2389
0.2420
0.6
0.2451
0.2483
0.2514
0.2546
0.2578
0.2611
0.2643
0.2676
0.2709
0.2743
0.5
0.2776
0.2810
0.2843
0.2877
0.2912
0.2946
0.2981
0.3015
0.3050
0.3085
0.4
0.3121
0.3156
0.3192
0.3228
0.3264
0.3300
0.3336
0.3372
0.3409
0.3446
0.3
0.3483
0.3520
0.3557
0.3594
0.3632
0.3669
0.3707
0.3745
0.3783
0.3821
0.2
0.3859
0.3897
0.3936
0.3974
0.4013
0.4052
0.4090
0.4129
0.4168
0.4207
0.1
0.4247
0.4286
0.4325
0.4364
0.4404
0.4443
0.4483
0.4522
0.4562
0.4602
0.0
0.4641
0.4681
0.4721
0.4761
0.4801
0.4840
0.4880
0.4920
0.4960
0.5000
z
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00
page 2:
z
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.0
0.5000
0.5040
0.5080
0.5120
0.5160
0.5199
0.5239
0.5279
0.5319
0.5359
0.1
0.5398
0.5438
0.5478
0.5517
0.5557
0.5596
0.5636
0.5675
0.5714
0.5753
0.2
0.5793
0.5832
0.5871
0.5910
0.5948
0.5987
0.6026
0.6064
0.6103
0.6141
0.3
0.6179
0.6217
0.6255
0.6293
0.6331
0.6368
0.6406
0.6443
0.6480
0.6517
0.4
0.6554
0.6591
0.6628
0.6664
0.6700
0.6736
0.6772
0.6808
0.6844
0.6879
0.5
0.6915
0.6950
0.6985
0.7019
0.7054
0.7088
0.7123
0.7157
0.7190
0.7224
0.6
0.7257
0.7291
0.7324
0.7357
0.7389
0.7422
0.7454
0.7486
0.7517
0.7549
0.7
0.7580
0.7611
0.7642
0.7673
0.7704
0.7734
0.7764
0.7794
0.7823
0.7852
0.8
0.7881
0.7910
0.7939
0.7967
0.7995
0.8023
0.8051
0.8078
0.8106
0.8133
0.9
0.8159
0.8186
0.8212
0.8238
0.8264
0.8289
0.8315
0.8340
0.8365
0.8389
1.0
0.8413
0.8438
0.8461
0.8485
0.8508
0.8531
0.8554
0.8577
0.8599
0.8621
1.1
0.8643
0.8665
0.8686
0.8708
0.8729
0.8749
0.8770
0.8790
0.8810
0.8830
1.2
0.8849
0.8869
0.8888
0.8907
0.8925
0.8944
0.8962
0.8980
0.8997
0.9015
1.3
0.9032
0.9049
0.9066
0.9082
0.9099
0.9115
0.9131
0.9147
0.9162
0.9177
1.4
0.9192
0.9207
0.9222
0.9236
0.9251
0.9265
0.9279
0.9292
0.9306
0.9319
1.5
0.9332
0.9345
0.9357
0.9370
0.9382
0.9394
0.9406
0.9418
0.9429
0.9441
1.6
0.9452
0.9463
0.9474
0.9484
0.9495
0.9505
0.9515
0.9525
0.9535
0.9545
1.7
0.9554
0.9564
0.9573
0.9582
0.9591
0.9599
0.9608
0.9616
0.9625
0.9633
1.8
0.9641
0.9649
0.9656
0.9664
0.9671
0.9678
0.9686
0.9693
0.9699
0.9706
1.9
0.9713
0.9719
0.9726
0.9732
0.9738
0.9744
0.9750
0.9756
0.9761
0.9767
2.0
0.9772
0.9778
0.9783
0.9788
0.9793
0.9798
0.9803
0.9808
0.9812
0.9817
2.1
0.9821
0.9826
0.9830
0.9834
0.9838
0.9842
0.9846
0.9850
0.9854
0.9857
2.2
0.9861
0.9864
0.9868
0.9871
0.9875
0.9878
0.9881
0.9884
0.9887
0.9890
2.3
0.9893
0.9896
0.9898
0.9901
0.9904
0.9906
0.9909
0.9911
0.9913
0.9916
2.4
0.9918
0.9920
0.9922
0.9925
0.9927
0.9929
0.9931
0.9932
0.9934
0.9936
2.5
0.9938
0.9940
0.9941
0.9943
0.9945
0.9946
0.9948
0.9949
0.9951
0.9952
2.6
0.9953
0.9955
0.9956
0.9957
0.9959
0.9960
0.9961
0.9962
0.9963
0.9964
2.7
0.9965
0.9966
0.9967
0.9968
0.9969
0.9970
0.9971
0.9972
0.9973
0.9974
2.8
0.9974
0.9975
0.9976
0.9977
0.9977
0.9978
0.9979
0.9979
0.9980
0.9981
2.9
0.9981
0.9982
0.9982
0.9983
0.9984
0.9984
0.9985
0.9985
0.9986
0.9986
3.0
0.9987
0.9987
0.9987
0.9988
0.9988
0.9989
0.9989
0.9989
0.9990
0.9990
3.1
0.9990
0.9991
0.9991
0.9991
0.9992
0.9992
0.9992
0.9992
0.9993
0.9993
3.2
0.9993
0.9993
0.9994
0.9994
0.9994
0.9994
0.9994
0.9995
0.9995
0.9995
3.3
0.9995
0.9995
0.9995
0.9996
0.9996
0.9996
0.9996
0.9996
0.9996
0.9997
3.4
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9998
z
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
(a) The minimum sample size required to construct a 95% confidence interval is
nothing
servings.
(Round up to the nearest wholenumber.)
(b) The 95% confidence interval is (
nothing
,
nothing
). It
does
does not
seem likely that the population mean could be within 3% of the sample mean because 3% off from the sample mean would fall
inside
outside
the confidence interval. It
does not
does
seem likely that the population mean could be within 0.3% of the sample mean because 0.3% off from the sample mean would fall
inside
outside
the confidence interval.
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started