Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

A data set includes body temperatures of healthy adult humans having a mean of F and a standard deviation of F. Construct a % confidence

A data set includes body temperatures of healthy adult humans having a mean of F and a standard deviation of F. Construct a % confidence interval estimate of the mean body temperature of all healthy humans. What does the sample suggest about the use of 98.6F as the mean body temperature?

t Distribution: Critical t Values Area in One Tail 0.005 0.01 0.025 0.05 0.10 Area in Two Tails Degrees of Freedom 0.01 0.02 0.05 0.10 0.20 1 63.657 31.821 12.706 6.314 3.078 2 9.925 6.965 4.303 2.920 1.886 3 5.841 4.541 3.182 2.353 1.638 4 4.604 3.747 2.776 2.132 1.533 5 4.032 3.365 2.571 2.015 1.476 6 3.707 3.143 2.447 1.943 1.440 7 3.499 2.998 2.365 1.895 1.415 8 3.355 2.896 2.306 1.860 1.397 9 3.250 2.821 2.262 1.833 1.383 10 3.169 2.764 2.228 1.812 1.372 11 3.106 2.718 2.201 1.796 1.363 12 3.055 2.681 2.179 1.782 1.356 13 3.012 2.650 2.160 1.771 1.350 14 2.977 2.624 2.145 1.761 1.345 15 2.947 2.602 2.131 1.753 1.341 16 2.921 2.583 2.120 1.746 1.337 17 2.898 2.567 2.110 1.740 1.333 18 2.878 2.552 2.101 1.734 1.330 19 2.861 2.539 2.093 1.729 1.328 20 2.845 2.528 2.086 1.725 1.325 21 2.831 2.518 2.080 1.721 1.323 22 2.819 2.508 2.074 1.717 1.321 23 2.807 2.500 2.069 1.714 1.319 24 2.797 2.492 2.064 1.711 1.318 25 2.787 2.485 2.060 1.708 1.316 26 2.779 2.479 2.056 1.706 1.315 27 2.771 2.473 2.052 1.703 1.314 28 2.763 2.467 2.048 1.701 1.313 29 2.756 2.462 2.045 1.699 1.311 30 2.750 2.457 2.042 1.697 1.310 31 2.744 2.453 2.040 1.696 1.309 32 2.738 2.449 2.037 1.694 1.309 33 2.733 2.445 2.035 1.692 1.308 34 2.728 2.441 2.032 1.691 1.307 35 2.724 2.438 2.030 1.690 1.306 36 2.719 2.434 2.028 1.688 1.306 37 2.715 2.431 2.026 1.687 1.305 38 2.712 2.429 2.024 1.686 1.304 39 2.708 2.426 2.023 1.685 1.304 40 2.704 2.423 2.021 1.684 1.303 45 2.690 2.412 2.014 1.679 1.301 50 2.678 2.403 2.009 1.676 1.299 60 2.660 2.390 2.000 1.671 1.296 70 2.648 2.381 1.994 1.667 1.294 80 2.639 2.374 1.990 1.664 1.292 90 2.632 2.368 1.987 1.662 1.291 100 2.626 2.364 1.984 1.660 1.290 200 2.601 2.345 1.972 1.653 1.286 300 2.592 2.339 1.968 1.650 1.284 400 2.588 2.336 1.966 1.649 1.284 500 2.586 2.334 1.965 1.648 1.283 1000 2.581 2.330 1.962 1.646 1.282 2000 2.578 2.328 1.961 1.646 1.282 Large 2.576 2.326 1.960 1.645 1.282

Negative z Scores Standard Normal (z) Distribution: Cumulative Area from the Left z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 negative 3.50 and lower .0001 -3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 -3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 -3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005 -3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007 -3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010 -2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 -2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 -2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 -2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036 -2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048 -2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064 -2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084 -2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110 -2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143 -2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183 -1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233 -1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294 -1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367 -1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455 -1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559 -1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681 -1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823 -1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985 -1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170 -1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379 -0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611 -0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867 -0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148 -0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451 -0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776 -0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121 -0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483 -0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859 -0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247 -0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641 Note: For values of z below -3.49, use 0.0001 for the area. *Use these common values that result from interpolation: z score Area -1.645 0.0500 -2.575 0.0050

Positive z Scores Standard Normal (z) Distribution: Cumulative Area from the Left z .00 .01 .02 .03 .04 .05 . 06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 3.50 and up .9999 Note: For values of z above 3.49, use 0.9999 for the area. *Use these common values that result from interpolation: z score Area 1.645 0.9500 2.575 0.9950 Common Critical Values Confidence Level Critical Value 0.90 1.645 0.95 1.96 0.99 2.575

1.What is the confidence interval estimate of the population mean ?

? F< < ? F (Round to three decimal places asneeded)

2.What does this suggest about the use of 98.6F as the mean bodytemperature?

A.This suggests that the mean body temperature couldverypossiblybe 98.6F

B.This suggests that the mean body temperature islowerthan 98.6F.

C.This suggests that the mean body temperature ishigherthan 98.6F.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Elementary Theory Of Numbers

Authors: William J LeVeque

1st Edition

0486150763, 9780486150765

More Books

Students also viewed these Mathematics questions

Question

What is the difference between planning and control?

Answered: 1 week ago

Question

How to Construct a Relative Frequency Histogram

Answered: 1 week ago