Question
A fair die is rolled, and then a coin with probability p of Heads is flipped as many times as the die roll says, e.g.,
A fair die is rolled, and then a coin with probability p of Heads is flipped as many times
as the die roll says, e.g., if the result of the die roll is a 3, then the coin is flipped 3
times. Let X be the result of the die roll and Y be the number of times the coin lands
Heads.
(a) Find the joint PMF of X and Y . Are they independent?
(b) Find the marginal PMFs of X and Y .
(c) Find the conditional PMFs of Y given X = x and of Y given X = x.
6. A committee of size k is chosen from a group of n women and m men. All possible
committees of size k are equally likely. Let X and Y be the numbers of women and men
on the committee, respectively.
(a) Find the joint PMF of X and Y . Be sure to specify the support.
(b) Find the marginal PMF of X in two di?erent ways: by doing a computation using
the joint PMF, and using a story.
(c) Find the conditional PMF of Y given that X = x.
7. A stick of length L (a positive constant) is broken at a uniformly random point X.
Given that X = x, another breakpoint Y is chosen uniformly on the interval [0, x].
(a) Find the joint PDF of X and Y . Be sure to specify the support.
(b) We already know that the marginal distribution of X is Unif(0, L). Check that
marginalizing out Y from the joint PDF agrees that this is the marginal distribution of
X.
(c) We already know that the conditional distribution of Y given X = x is Unif(0, x).
Check that using the definition of conditional PDFs (in terms of joint and marginal
PDFs) agrees that this is the conditional distribution of Y given X = x.
(d) Find the marginal PDF of Y .
(e) Find the conditional PDF of X given Y = y.
8. (a) Five cards are randomly chosen from a standard deck, one at a time with replacement.
Let X, Y, Z be the numbers of chosen queens, kings, and other cards. Find the joint PMF
of X, Y, Z.
(b) Find the joint PMF of X and Y .
Hint: In summing the joint PMF of X, Y, Z over the possible values of Z, note that most
terms are 0 because of the constraint that the number of chosen cards is five.
(c) Now assume instead that the sampling is without replacement (all 5-card hands are
equally likely). Find the joint PMF of X, Y, Z.
Hint: Use the naive definition of probability.
9. Let X and Y be i.i.d. Geom(p), and N = X + Y .
(a) Find the joint PMF of X, Y, N.
(b) Find the joint PMF of X and N.
(c) Find the conditional PMF of X given N = n, and give a simple description in words
of what the result says
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started