Answered step by step
Verified Expert Solution
Question
1 Approved Answer
A shoe manufacturer is evaluating new equipment that would custom fit athletic shoes. The new equipment costs $107,000 and will generate $42,000 in net cash
A shoe manufacturer is evaluating new equipment that would custom fit athletic shoes. The new equipment costs $107,000 and will generate $42,000 in net cash flows for five years. (PV of $1. FV of $1. PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.) (Negative cumulative cash flows should be indicated with a minus sign. Round your present value factor to 4 decimals and break-even time answers to two decimal places.) Determine the break-even time for this equipment. Chart Values are Based on: 1 = Year Net Cash Flow X Present Value of 1 at 10% 1.0000 Present Value Cumulative Present of Net Cash Value of Net Cash Flows Flows $ (107,000) $ (107,000) Initial investment $ (107,000) X Year 1 Year 2 Year 3 Year 4 Year 5 Table B.1* Present Value of 1 p=1/(1 + 7)" Rate Periods 1% 2% 3% 4% "7% 8% 9% 10% 12% 15% Periods 6% 0.9434 1 0.9901 0.9804 0.9709 0.9615 0.9346 0.9259 0.9174 09091 0.8929 0.8696 1 2 0.9803 0.9612 0.9426 0.9246 0.8900 0.8734 0.8417 0.8264 0.7972 0.7561 2 3 0.9706 0.8573 0.7938 0.9423 0.9151 0.8396 0.8163 0.7722 0.7513 0.7118 0.6575 3 4 0.9610 0.9238 0.8885 5% 0.9524 0.9070 0.8638 0.8227 0.7835 0.7462 0.7107 0.6768 0.7629 0.7084 0.6830 0.6355 0.5718 4 0.7921 0.7473 0.7350 0.6806 5 0.8890 0.8548 0.8219 0.7903 0.7599 0.9515 0.9057 0.8626 0.7130 0.6499 0.6209 0.5674 0.4972 5 6 0.9420 0.8880 0.8375 0.7050 0.6663 0.6302 0.5963 0.5645 0.5066 0.4323 6 7 0.9327 0.8706 0.8131 0.6651 0.6227 0.5835 05470 0.5132 0.4523 03759 7 8 0.9235 0.8535 0.7894 0.7307 0.6274 0.5820 0.5403 0.5019 0.4665 0.4039 0.3269 8 9 0.9143 0.8368 0.7664 0.7026 0.6446 0.5439 0.5002 0.4604 0.4241 0.3606 0.2843 9 10 0.9053 0.8203 0.7441 0.6756 0.5083 0.4632 0.4224 03855 0.2472 10 0.6139 0.5847 0.5919 0.5584 0.5268 0.4970 0.3220 0.2875 11 0.8963 0.8043 0.7224 0.6496 0.4751 0.4289 0.3875 0.3505 0.2149 11 12 0.8874 0.7885 0.7014 0.6246 0.5568 0.4440 0.3971 0.3555 03186 0.1869 12 0.2567 0.2292 13 0.8787 0.7730 0.6810 0.6006 0.5303 0.4688 0.4150 0.3677 0.3262 0.2897 0.1625 13 14 0.8700 0.7579 0.6611 0.5775 0.5051 0.4423 0.3878 0.3405 0.2992 0.2633 0.2046 0.1413 14 15 0.8613 0.7430 0.6419 0.5553 0.4810 0.4173 0.3624 0.3152 0.2745 0.2394 0.1827 0.1229 15 16 0.8528 0.7284 0.6232 0.5339 0.4581 0.3936 0.3387 0.2919 0.2519 0.2176 0.1069 16 0.1631 0.1456 17 0.8444 0.7142 0.6050 0.5134 0.4363 0.3714 0.3166 0.2703 0.2311 0.0929 17 18 0.8360 0.7002 0.5874 0.4155 0.2502 0.1300 18 0.3503 0.3305 19 0.1978 0.1799 01635 0 1456 0.4936 0.4746 0.4564 0.6864 0.0SOS 0.0703 0.3957 0.2959 0.2765 0.2584 0.8277 0 8195 0.2317 0.2120 0.1945 0.1784 0.5703 0.5537 19 0 1161 0.1037 20 0.6730 0.3769 0.3118 0.2145 0.0611 20 2 0.9803 0.9612 0.9426 0.9246 0.9070 0.8900 0.8734 0.8573 0.8417 0.8264 0.7972 0.7561 2 3 0.9706 0.9423 0.9151 0.8890 0.8638 0.8396 0.7722 0.7513 0.7118 0.6575 3 0.8163 0.7629 0.7938 0.7350 4 0.9610 0.9238 0.8885 0.8548 0.8227 0.7921 0.7084 0.6830 0.6355 0.5718 4 5 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473 0.7130 0 6806 0.6499 0.6209 0.5674 0.4972 5 6 0.9420 0.8880 0.8375 0.7903 0.7462 0.7050 0.6663 0.6302 0.5963 0.5645 0.5066 6 0.4323 0.3759 7 0.9327 0.8706 0.8131 0.7599 0.7107 0.6651 0.6227 0.5835 0.5470 0.5132 0.4523 7 8 0.9235 0.8535 0.7894 0.7307 0.6768 0.6274 0.5820 0.5403 0.4665 0.4039 0.3269 8 9 0.9143 0.8368 0.7664 0.7026 0.6446 0.5919 0.5439 0.5002 0.5019 0.4604 0.4224 0.4241 0.3606 0.2843 9 10 0.9053 0.8203 0.7441 0.6756 0.6139 0.5584 0.5083 0.4632 0.3855 0.3220 0.2472 10 0.8963 0.8043 0.6496 0.5847 0.5268 0.4751 0.4289 0.3875 0.3505 11 11 12 0.7224 0.7014 0.2875 0.2567 0.8874 0.6246 0.5568 0.4970 0.4440 0.3555 0.3186 12 0.2149 0.1869 0.1625 0.1413 13 0.5303 0.3262 13 0.8787 0.8700 0.7885 0.7730 0.7579 0.7430 0.7284 0.4688 0.4423 0.4150 0.3878 0.2897 0.2633 14 0.5051 0.2992 14 0.2292 0.2046 0.1827 0.1631 15 0.8613 0.4810 0.4173 0.1229 15 16 0.8528 0.3936 0.2394 0.2176 0.1978 0.1069 0.4581 0.4363 16 17 0.3714 0.1456 0.0929 17 0.7142 0.7002 0.6810 0.6611 0.6419 0.6232 0.6050 0.5874 0.5703 0.5537 0 4776 0.4120 18 0.6006 0.5775 0.5553 0.5339 0.5134 0.4936 0.4746 0.4564 0.3751 0.3083 0.2534 0.8444 0.8360 0.8277 0.8195 0.2745 0.2519 0.2311 0.2120 0.1945 0.1784 0.1799 0.0808 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2502 0.2317 0.2145 0.1460 010994 0.0676 0.0460 18 0.4155 0.3957 19 0.6864 0.1635 0.3624 0.3387 0.3166 0.2959 0.2765 0.2584 0.1842 0.1314 0.0937 0.0668 0.1300 0.1161 0.1037 0.0703 19 20 0.1486 0.0611 20 25 0.7798 0.3503 0.3305 0.3118 0.2330 0.1741 0.1301 0.0972 0.6730 0.6095 0.5521 0.0923 0.0588 0.0304 25 30 0.3769 0.2953 0.2314 0.1813 0.1420 0.1160 0.0754 0.0490 0.0334 0.7419 0.7059 0.0151 30 35 0.5000 0.3854 0.0573 0.0356 0.0221 0.0075 35 0.0189 0.0107 40 0.6717 0.4529 0.3066 0.2083 0.0318 0.0037 40 *Used to compute the present value of a known fiture amount. For example! How much would you need to invest today at 10% compounded semiannually to accumulate $5,000 in 6 vears from todav? Using the factors of n = 12 and i = 5% (12 semiannual periods and a sennannual rate of 5%), the factor is 0.5568. You would need to invest S2,784 today ($5,000 x 0.5568). Table B.2 Future Value of 1 f=(1+1)" Rate Periods 1% 2% 3% 4% 5% 6% 8% 9% 10% 12% 15% Periods 7% 1.0000 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 1 1.0100 1.0200 1.0300 1.0400 1.0500 1.0600 1.0700 1.0800 1.0900 1.0000 1.1000 1.2100 1.1500 1 1.1200 1.2544 2 1.0201 1.0404 1.0609 1.0816 1.1025 1.1236 1.1449 1.1664 1.1881 1.3225 2 3 1.1249 1.1576 1.2250 1.2597 1.2950 1.3310 1.4049 1.5209 3 1.0303 1.0406 1.0927 1.1255 4 1.1699 1.2155 1.1910 1.2625 1.3382 1.3108 1.4641 1.7490 1.0612 1.0824 1.1041 1.1262 4 5 1.0510 1.1593 1.2763 1.4026 2.0114 5 6 1.1941 1.3401 1.4185 1.5007 2.3131 6 1.0615 1.0721 1.5735 17623 1.9738 2.2107 2.4760 2.7731 7 1.4071 1.5036 2.6600 7 8 1.5938 8 1.0829 1.0937 1.1046 1.4775 1.5513 3.0590 3.5179 9 1.6895 1.4116 1.5386 1.6771 1.8280 1.9926 2.1719 2.3674 2.5804 2.8127 3.0658 9 10 1.6289 1.7908 3.1058 4.0456 1.1487 1.1717 1.1951 1.2190 1.2434 1.2682 1.2936 1.3195 10 11 3.4785 1.2299 1.2668 1.3048 1.3439 1.3842 1.4258 1 4685 1 5126 1.5580 1.6047 16528 11 1.2167 1.2653 1.3159 1.3686 1.4233 1.4802 1.5395 1.6010 1.6651 1.7317 1.8009 1.8730 1.9479 2.0258 2 1068 1.3605 1.4693 1.5869 1.7138 1.8509 1.9990 2.1589 2.3316 2.5182 2.7196 2.9372 3.1722 3.4259 3.7000 3.9960 1.1157 1.1268 1.1381 1.1495 1.7103 1.7959 1.8856 1.6105 1.7716 1.9487 2.1436 2.3579 2.5937 2.8531 3.1384 3.4523 3.7975 4.1772 4.5950 5.0545 4.6524 5.3503 12 13 3.8960 12 1.6058 1.7182 1.8385 1.9672 2.1049 2.2522 2.4098 2.5785 2.7590 2.9522 3.1588 3.3799 3.6165 4.3635 6.1528 13 14 9799 3.3417 4.8871 7.0757 14 15 1.8983 2.0122 2.1329 2.2609 2.3966 2.5404 2.6928 2.8543 3.0256 1.1610 1.3459 1.3728 15 0789 2.1829 5.4736 6.1304 16 3.6425 3.9703 4.3276 1.1726 8.1371 9.3576 10.7613 16 17 1.4002 5920 6.8660 17 18 1.1843 1.1961 1.2081 1.7024 214066 4.7171 5.5599 7.6900 12.3755 18 1.4282 1.4568 19 1.7535 215270 4.3157 5.1417 6.1159 8.6128 14.2318 19 6 1.0615 1.1941 1.2653 1.3401 1.4185 1.5007 1.5869 1.6771 1.7716 1.1262 1.1487 2.3131 6 7 1.0721 1.9738 2.2107 1.2299 1.5036 1.6058 1.7138 1.8280 1.9487 2.6600 7 8 1.0829 1.1717 1.2668 1.5938 1.7182 1.8509 1.9926 2.1436 3.0590 8 9 1.0937 1.1951 2.4760 2.7731 1.3048 1.6895 1.8385 1.9990 2.1719 2.3579 3.5179 9 10 1.1046 1.2190 1.3439 1.7908 1.9672 2.1589 2.3674 2.5937 4.0456 10 11 1.1157 1.2434 1.3842 1.8983 2.1049 2.3316 2.5804 2.8531 4.6524 11 12 1.1268 1.2682 1.4258 2.0122 2.5182 5.3503 12 13 1.1381 3.1058 3.4785 3.8960 4.3635 4.8871 5.4736 1.2936 1.4685 2.1329 2.7196 13 14 1.1495 1.3195 1.9799 2.9372 6.1528 7.0757 8.1371 14 15 1.1610 15 1.3159 1.4071 1.3686 1.4775 1.4233 1.5513 1.4802 1.6289 1.5395 1.7103 1.6010 1.7959 1.6651 1.8856 1.7317 1.8009 2.0789 2.1829 1.9479 2.2920 2.0258 2.4066 2.1068 2.5270 2.1911 2.6533 2.6658 3.3864 3.2434 -4.3219 3.9461 515160 4.8010 710400 16 1.1726 1.8730 9.3576 16 1.3459 1.3728 1.4002 1.4282 1.4568 17 1.1843 10.7613 17 3.1384 3.4523 3.7975 4.1772 4.5950 5.0545 5.5599 6.1159 6.7275 10.8347 2.2609 2.3966 2.5404 2.6928 2.8543 3.0256 3. 2071 4.2919 5.7435 3.1722 3.4259 3.7000 3.9960 4.3157 4.6610 6.1304 6.8660 7.6900 18 2.2522 2.4098 2.5785 2.7590 2.9522 3.1588 3.3799 3.6165 3.8697 5:4274 76123 10 6766 14.9745 1.1961 2.8127 3.0658 3.3417 3.6425 3.9703 4.3276 4.7171 5.1417 5.6044 8.6231 13.2677 20.4140 31.4094 1.5126 1.5580 1.6047 1.6528 1.7024 1.7535 1.8061 0938 2.4273 2.8139 3.2620 12.3755 18 19 1.2081 14.2318 19 20 1.2202 1.4859 16.3665 20 25 1 2824 6.8485 25 8.6128 9.6463 17.0001 29.9599 52.7996 93.0510 1.6406 1.8114 1.9999 30 32.9190 66.2118 1.3478 1.4166 10.0627 30 35 7:6861 17.4494 28.1024 45.2593 133.1755 14.7853 21.7245 35 40 14889 2.2080 10.2857 267.8635 40 Used to compute the future value of a known present amount. For example: What is the accumulated value of $3,000 invested today at 8% compounded quarterly for 5 years? Using the factors ofn= 20 and i = 2% (20 quarterly periods and a quarterly interest rate of 29), the factor is 2.4859. The accumulated value is $4,457.70 (53,000 * 7.4859). Table B.3 Present Value of an Annuity of 1 p = [1 - 1/(1+1)"/i Rate 15% Periods Periods 1% 3% 9% 12% 2% 4% 5% 10% 6% 8% 7% 1 1 0.9901 0.8929 0.9804 0.9091 0.9709 0.9615 0.9434 0.9524 0.9346 0.9174 0.9259 0.8696 1.6257 2 1.9416 2 1.9704 1.9135 1.7591 1.8334 1.8080 1.7833 1.7355 1.8861 2.7751 1.8594 2.7232 1.6901 2.4018 2.2832 3 3 2.9410 2.8839 2.4869 2.6243 2.5313 2.5771 2.8286 3.7171 2.6730 3.4651 4 2.8550 3.0373 3.3872 3.1699 3.9020 3.8077 3.6299 3.5460 3.3121 3.2397 4 5 3.8897 3.3522 4.4518 4.1002 3.7908 3.6048 4.7135 5 4.5797 4.3295 4.2124 3.9927 4.8534 5.7955 6 5.6014 5.4172 4.3553 6 5.2421 5.0757 4.7665 4.9173 4.4859 4.6229 3.7845 4.1604 7 6.7282 7 6.4720 6.2303 6.0021 5:0330 5.7864 5.5824 5.3893 5.2064 4.1114 4.5638 4.9676 5.3282 8 4.4873 8 6.4632 5.9713 5.7466 7.6517 6.2098 6.7327 7.4353 9 9 8.5660 7.1078 6.2469 6.8017 6.5152 5.6502 10 10 8.1109 7.7217 7.0236 7.4987 6.7101 7.1390 11 7.3601 7.8869 8.3838 11 8.7605 8.3064 12 4.8684 15.3349 5.7590 6.1446 6.4951 6.8137 7.1034 7.3667 7.6061 7.8237 4.7716 5.0188 5.2337 5.4206 5.5831 5.7245 9.3851 7.9427 12 8.8633 7.5361 13 9.4713 10.3676 11.2551 12.1337 13.0037 13.8651 14.7179 8.8527 9.3936 9.9856 7.9038 13 8.3577 8.7455 14 9.8986 9.2950 5.5348 5.9952 6.4177 6.8052 7.1607 7.4869 7.7862 8.0607 8.3126 8.5436 8.7556 8.9501 9.1285 8.2442 7.3255 7.0197 8.1622 7.7861 8.9826 8.5302 9.7868 9.2526 10.5753 9.9540 11 3484 10.6350 12.1062 11.2961 12.8493 11.9379 13.5777|12.5611 14.2919 13.1661 14.9920 13.7535 15.6785 14.3238 16.3514 14 8775 21 14 5.9377 6.1944 6.4235 6.6282 6.8109 6.9740 7.1196 7.2497 15 10.3797 9.7122 9.1079 15 5.8474 5.9542 16 10.8378 9.4466 16 9.7632 17 6.0472 10.5631 11.1184 11.6523 12.1657 12.6593 13.1339 13.5903 11 17 15.5623 6.1280 18 8.5595 8.8514 9.1216 9.3719 9.6036 9.8181 10 ZLO 18 11.2741 11.6896 12.0853 12.4622 10.1059 10.4773 10.8276 11.1581 11.4699 110110 10.0591 10.3356 10.5940 16.3983 17.2260 18.0456 8.0216 8.2014 8.3649 8.5136 19 7.3658 6.1982 6.2593 19 7.4694 20 20 . 17 QUIC1 A6 3 2.9410 2.8839 2.8286 2.7751 2.6730 2.6243 2.5771 25313 2.4869 2.4018 2.2832 3 4 2.7232 3.5460 3.9020 3.8077 3.7171 3.6299 3.4651 3.3872 3.0373 2.8550 4 5 4.8534 4.7135 4.5797 4.4518 4.3295 3.3121 3.9927 3.2397 3.8897 3.1699 3.7908 4.2124 4.1002 3.6048 3.3522 5 6 5.7955 5.6014 5.4172 5.2421 5.0757 4.6229 4.4859 4.3553 4.1114 3.7845 6 7 6.7282 6.4720 6.2303 6.0021 4.9173 5.5824 6.2098 4.7665 5.3893 5.9713 5.2064 5.0330 4.8684 4.1604 7 8 7.6517 7.3255 5.7864 6.4632 7.1078 7.0197 4.5638 4.9676 6.7327 7.4353 5.7466 4.4873 8 9 8.5660 8.1622 7.7861 5.3349 5.7590 6.5152 6.2469 4.7716 9 10 9.4713 8.9826 8.5302 8.1109 7.7217 5.3282 5.6502 5.9377 5.0188 10 11 10.3676 9.7868 9.2526 8.7605 8.3064 6.1446 6.4951 6.8137 5.2337 11 12 11.2551 10.5753 7.0236 7.4987 7.9427 8.3577 8.7455 9.9540 6.1944 5.4206 12 13 12.1337 13.0037 11.3484 12.1062 5.5831 13 14 6.4235 6.6282 14 12.8493 15 16 5.7245 5.8474 6.8109 15 5.9542 16 13.8651 14.7179 15.5623 16.3983 17.2260 18.0456 17 6.8017 7.3601 7.8869 8.3838 8.8527 9.2950 9.7122 10.1059 10.4773 10 8276 11.1581 11.4699 12.7834 13.7648 14.4982 15.0463 13.5777 14.2919 14.9920 15.6785 16.3514 19.5235 5.5348 5.9952 6.4177 6.8052 7.1607 74869 7.7862 8.0607 8.3126 8.5436 8.7556 8.9501 9.1285 9.8226 10.2737 10.5668 10.7574 10.6350 11.2961 11.9379 12.5611 13.1661 13.7535 14.3238 14.8775 17.4131 19.6004 21.4872 23.1148 9.3851 8.8633 9.9856 9.3936 10.5631 9.8986 11.1184 10.3797 11.6523 10.8378 12.1657 11.2741 12.6593 11.6896 13.1339 12.0853 13.5903 12.4622 15.6221 14.0939 17.2920 15.3725 18.6646 16:3742 19.7928 17.1591 6.0472 6.7101 7.1390 7.5361 7.9038 8.2442 8.5595 8.8514 91216 9.3719 9.6036 9.8181 10.6748 11.2578 11.6546 11.9246 18 7.1034 7.3667 7.6061 7.8237 8.0216 8.2014 8.3649 8.5136 9.0770 6.9740 7.1196 7.2497 7.3658 9.1079 9.4466 9.7632 10.0591 10.3356 10.5940 11.6536 12.4090 12.9477 13 3317 17 18 19 6.1280 6.1982 6.2593 19 20 7.4694 20 25 22.0232 6.4641 25 30 25.8077 9.4269 6.5660 30 22.3965 24.9986 7.8431 8.0552 8.1755 8.2438 35 29.4086 9.6442 6.6166 35 40 32.8347 27.3555 9.7791 6.6418 40 Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2,000 per year for 10 years assuming an annual interest rate of 9%? For in = 10, i = 9%), the PV factor is 6.4177 $2,000 per year for 10 years is the equivalent of $12,835 today (S2,000 x 6,4177). Table B.4%Future Value of an Annuity of 1 f=[(1 + i)" - 1]/i Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 2 2.0100 2.0200 2.0300 2.0400 2.0700 2.1200 2.1500 2 3 3.0301 3.0604 3.0909 2.0500 3.1525 4.3101 3.1216 1.0000 2.0800 3.2464 4.5061 2.0900 3.2781 2.1000 3.3100 3.3744 3.4725 3 4 4.0604 4.1216 4.1836 1.0000 2.0600 3.1836 4.3746 5.6371 6.9753 8.3938 4.2465 4.6410 4.7793 4.9934 4 5 5.1010 5.2040 5.3091 5.4163 5.5256 5.8666 6.1051 6.3528 6.7424 5 6 6.1520 6.3081 6.4684 6 6.6330 6.8019 7.3359 4.5731 59847 7.5233 9.2004 11.0285 7.7156 8.1152 6 7 7.2135 7.4343 7.6625 7.8983 9.2142 8.7537 11.0668 9.4872 8.1420 9.5491 10.0890 7 8 8.2857 8.5830 8.9228 10.6366 8.8923 11.4359 12.2997 13.7268 8 9 93685 9.7546 10.1591 10.5828 13.0210 13.5795 16.7858 9 9.8975 11.4913 13.1808 14.9716 10 oooo 10.4622 12.4876 14.4866 10.9497 11.4639 3.2149 4.4399 5.7507 7.1533 8.6540 10.2598 11.9780 13.8164 15.7836 17.8885 20.1406 22.5505 25.1290 27.8881 30.8402 12.0061 14.7757 175487 15.1929 15.9374 20.3037 10 11 11.5668 12.1687 12.8078 13.4864 17.5603 18.5312 20.6546 11 12 16.6455 18.9771 13.4121 14.1920 15.0258 24.3493 29.0017 16.8699 12.6825 13.8093 20.1407 21.3843 12 13 14.6803 15.6178 24.1331 28.0291 21.4953 22.9534 24.5227 34.3519 13 11.0266 12.5779 14.2068 15.9171 17.7130 19.5986 21.5786 23.6575 25.8404 28.1324 16.6268 18.2919 14 14.9474 15.9739 17.0863 24.2149 40 5047 14 15 16.0969 27.9750 31.7725 17.2934 18.8821 21.0151 23.2760 25.6725 28.2129 18.5989 32.3926 37 2797 20.0236 26.0192 29.3609 33.0034 47.5804 27.1521 30.3243 15 16 17.2579 21.8245 35 9497 16 18.6393 20.0121 20.1569 21.7616 17 ninoasalo 18.4304 23.6975 36.9737 42.7533 48.8837 55.7497 33.7502 37.4502 55.7175 65.0751 75.8364 40.5447 +5.5992 17 18 19.6147 21.4123 23.4144 25.6454 30.9057 33.9990 18 20.8109 22.8406 27.6712 33.7600 37.3790 +1.4463 65.4397 SS 2118 41.3013 46.0185 51.1601 19 20 19 25.1169 26.8704 30.5390 33.0660 51.1591 57.2750 22.0190 24.2974 29.7781 36.7856 40.9955 45.7620 72.0524 102 4436 20 4.1020 4.240 4.3101 4.3746 4.5061 4.5731 4.6410 4.7793 4.9934 4 5 5.1010 4.4399 5.7507 5.2040 5.3091 5.4163 5.5256 5.6371 5.8666 5.9847 6.1051 6.3528 6.7424 5 6 6.1520 6.3081 6.4684 6.6330 6.8019 6.9753 7.1533 73359 7.5233 7.7156 8.1152 6 7 7.2135 7.4343 7.6625 8.7537 11.0668 7.8983 8.1420 8.3938 8.6540 8.9228 9.4872 10.0890 7 9.2004 11.0285 8 8.2857 8.5830 8.8923 9.2142 9.5491 9.8975 10.2598 10.6366 11.4359 12.2997 13.7268 8 9 9.3685 9.7546 10.1591 10.5828 11.0266 12.4876 13.0210 13.5795 14.7757 16.7858 9 10 10.4622 10.9497 11.4639 12.0061 14.4866 15.1929 15.9374 17.5487 20.3037 10 12.5779 14.2068 11 11 5668 12.1687 12.8078 13.4864 24.3493 11 16.6455 18.9771 18.5312 21.3843 12 12.6825 13.4121 20.6546 24.1331 14.1920 17.5603 20.1407 22.9534 15.0258 15.9171 29.0017 12 13 13.8093 15.6178 16.6268 17.7130 21.4953 24.5227 28.0291 13 14.6803 15.9739 34.3519 40.5047 14.9474 17.0863 18.2919 24.2149 14 15 26.0192 27.9750 32.3926 14 16.0969 17.2934 18.5989 31.7725 37.2797 47.5804 15 20.0236 21.8245 16 17.2579 18.6393 20.1569 19.5986 21.5786 23.6575 25.8404 28.1324 16 11.4913 11.9780 13.1808 13.8164 14.9716 15.7836 16.8699 17.8885 18.8821 20.1406 21.0151 22.5505 23.2760 25.1290 25.6725 27.8881 28.2129 30.8402 30.9057 33.9990 33.7600 37.3790 36.7856 40.9955 54.8645 63.2490 79.0582 94.4608 111 4348 138.2369 154.7620 | 199.6351 35.9497 40.5447 17 18.4304 55.7175 65.0751 20.0121 21.7616 42.7533 48.8837 55.7497 23.6975 17 18 19.6147 75.8364 18 19 20.8109 25.6454 27.6712 29.7781 88.2118 21.4123 22.8406 24.2974 32.0303 19 30.5390 33.0660 27.1521 29.3609 30.3243 33.0034 33.7502 36.9737 37.4502 41.3013 41.4463 46.0185 45.7620 51.1601 73.1059 84.7009 113.2832 136 3075 172.3168 215.7108 259.0565 337.8824 45.5992 51.1591 57-2750 98.3471 63.4397 72.0524 20 23.4144 25.1169 26.8704 36.4593 47.5754 60.4621 22.0190 20 102 4436 212.7930 25 28.2432 41.6459 133 3339 25 30 34.7849 40.5681 56.0849 164.4940 30 47.7271 66.4388 90.3203 120.7998 35 41.6603 49.9945 73.6522 241.3327 434.7451 431.6635 881.1702 767 0914 1,779.0903 271.0244 442.5926 35 40 48.8864 60.4020 75.4013 95.0255 40 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4,000 per year for 6 years assuming an annual interest rate of 8%? For in=6, i = 8%), the FV factor is 7.3359. $4,000 per year for 6 years accumulates to $29,343.60 (S4,000 7.3359)
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started