Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Activity/Question 2 : ((Datafile = CreditScore) The above datafile (in the DATA worksheet) provides the FICO credit scores for people with different values in 8
Activity/Question 2 : ((Datafile = CreditScore) The above datafile (in the "DATA" worksheet) provides the FICO credit scores for people with different values in 8 different corresponding fields (Bureaulnquiries, Credit Usage,... TimeOnJob). The description of each variable/feature is provided in the Description" worksheet. Your task is to explore and determine (after all the necessary analysis) the final, best model (equation) to be used to predict credit score. ..ie. which of the 8 fields/features are relevant and should be included in final the regression model(equation) to estimate the credit score and which features are to be excluded. Provide justifications and explanations for your choice/decision. [ 25 marks ] [Hint: Start with a model with all 8 features included. Then determine and explore which feature should be taken out to obtain a more accurate and/or simpler model. Use Adjusted-R-square to determine if a model is better or worse than another. ] Description Data III B F Home Owner 1 BureauInquiries 1 TimeOnJob 3 5 6 2 3 4 5 8 7 7 6 6 6 7 7 8 9 25585BERBRES DE 8 6 7 7 5 3 5 6.40 10 6 OOOOOOO 10 11 12 13 8 8 13 6 8 7 14 15 16 17 18 6 8 6 9 14 6 11 6 19 20 21 22 6 7 6 5 15 10 5 7.90 6 15 6 10 8 23 24 25 26 21 6 7 6 7 6 7 17500 0 7 28 29 30 31 32 33 4 7 8 7 8 11 13 7 7 9 4 7 8 8 7 34 35 6 5 36 37 38 CreditScore 656 696 693 729 695 708 682 719 678 707 646 640 615 779 577 746 651 763 658 589 791 681 821 641 710 726 718 749 668 762 693 748 693 702 600 578 619 730 617 641 729 710 703 729 678 775 485 624 693 635 742 753 777 733 652 748 681 697 715 685 696 691 577 652 673 628 714 619 819 626 679 613 C Credit Usage 0.270 0.300 0.280 0.230 0.230 0.280 0.320 0.270 0.300 0.220 0.270 0.230 0.180 0.160 0.420 0.170 0.480 0.660 0.340 0.310 0.660 0.310 0.260 0.670 0.270 0.250 0.240 0.280 0.270 0.320 0.240 0.140 0.250 0.120 0.270 0.280 0.390 0.330 0.240 0.240 0.230 0.240 0.310 0.240 0.230 0.180 0.450 0.460 0.310 0.190 0.190 0.250 0.160 0.180 0.200 0.250 0.210 0.190 0.380 0.200 0.220 0.190 0.470 0.380 0.240 0.350 0.260 0.250 0.230 0.2410 0.270 0.300 D E TotalCredit CollectionReports 18000 0 17000 0 20000 0 16000 0 16000 0 20000 0 8000 0 18000 0 17000 0 21500 0 21500 0 21000 0 19500 0 20000 0 32000 O 19000 0 5000 O 24000 0 22000 O 8000 0 24000 0 20000 0 20000 0 7000 0 20500 0 16000 0 0 18500 0 25000 0 18000 0 19500 0 17000 O 18000 O 17000 0 11000 0 23500 1 11500 0 16000 0 20500 0 20500 0 19500 0 19500 0 13000 O 13500 0 13000 1 15500 o 15000 1 12500 1 13000 0 18500 1 15500 0 14500 0 16500 0 17500 0 30500 0 17500 0 17000 O 13000 0 7500 O 18000 0 12000 0 13000 0 4500 0 7500 0 13500 O 5000 0 13000 7500 14500 15500 21500 1 12500 1 G H MissedPayments HomeOwner Credit Age 2 0 6.40 0 1 7.50 0 1 6.30 1 1 6.70 1 1 6.70 1 6.30 1 7.80 0 1 7.50 1 6.00 0 8.00 1 7.10 1 9.40 O 1 7.20 0 10.10 0 1 8.20 0 1 5.80 0 1 5.40 0 0 1 7.50 0 1 5.40 0 1 5.00 0 1 7.50 2 0 7.90 O 1 7.00 2 1 7.20 1 6.00 0 1 7.50 0 1 7.80 0 0 10.90 0 1 7.00 O 1 6.60 O 1 6.40 0 1 7.00 2 1 5,60 1 1 6.40 1 5.00 0 1 4.60 0 1 5.80 0 1 5.80 1 0 5.20 1 0 5.20 1 1 6.40 1 1 8.50 1 1 8.50 1 1 7.00 4 1 7.40 2 1 1 1 6.40 1 1 7.40 1 1 6.10 0 1 8.00 1 6.70 1 5.70 0 5.30 1 1 7.00 0 7.80 1 5.70 0 5.60 1 5.70 0 6.80 0 1 5.70 1 5.50 0 0 5.60 O 1 6.90 0 1 8.30 0 1 7.80 2 1 0 1 9.10 0 1 5.50 2 0 7.00 2 1 9.50 7 15 7 6 O 7 39 40 41 42 7 10 2 2 5 7 6 6 5 43 44 45 7 6 5 6 6 46 47 48 49 50 51 52 7 6 6 5 7 6 6 6 6 7.40 7 6 7 12 10 6 53 54 55 6 9 9 6 OOC 56 6 6 57 58 4 10 5 7 59 60 61 6 6 7 VOOOO 3 7 6 62 6 2 3 63 6 7 64 65 od 6 66 7 8 7 7 4 14 6 67 68 69 70 71 6 6 6 6.40 OOOO 6 9 5 4 5 7 6 6 72 73 B E 1 6 1 2 0 1 0 8 0 7 4 9 5 6 0 0 7 1 1 O 1 1 1 1 7 O 15 0 0 0 0 0 7 7 6 6 7 0 0 0 13 4 4 8 4 7 5 0 1 1 1 1 1 1 7 1 7 0 0 0 2 1 1 1 1 1 1 OOC 7 7 7 6 7 7 7 6 6 O 1 10.00 7.30 9.10 5.50 5.10 9.00 8.90 5.00 11.80 9.60 6.00 6.50 6.10 6.10 6.10 7.10 6.10 6.10 6.10 7.00 6.80 6.80 6.50 6.60 7.40 5.20 4.30 3 3 3 6 3 3 1 0 0 0 0 0.270 0.230 0.230 0.240 0.180 0.320 0.180 0.510 0.220 0.200 0.340 0.220 0.430 0.410 0.390 0.250 0.430 0.440 0.390 0.270 0.240 0.210 0.170 0.260 0.340 0.265 0.360 0.340 0.250 0.120 0.210 0.305 0.250 0.130 0.120 0.230 0 0 0 0 1 1 3 0 0 0 0 1 1 3 4 11 14 11 6 0 7 583 657 816 563 736 714 629 567 703 661 575 705 597 733 743 663 630 742 682 579 761 741 731 746 650 705 527 687 622 588 561 593 573 651 570 676 664 608 706 546 648 571 557 510 746 666 0 1 0 7 0 2 4 3 0 2 6 8 1 0 O 0 9 0 0 0 0 2 2 6 7 7 7.40 1 0 0 1 2 1 1 6 1 3 7 1 0 6.30 6.20 5.20 6.00 6.30 5.60 6.20 8.30 1 0 0 7 7 7 7 7 1 0 0 1 0.230 8.30 11 7 3 4 5 5 4 4 4 5 4 4 7 3 3 4 4 4 2 2 0 3 2 2 2 1 4 2 1 1 6 1 1 1 1 1 0 0 0 1 6 7 7 74 75 76 7 78 79 80 81 82 83 81 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 10+ 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 151 155 157 9.90 5.40 7.70 1 0 7.60 15000 24000 14500 15500 18000 17000 16000 15000 15500 18000 11000 15000 31500 30000 30500 15500 30500 30000 31500 22500 16500 16500 16000 13500 33000 18000 24000 33000 19500 17000 14000 21000 19500 17000 18000 17500 17500 15000 27000 24000 25000 18000 18000 7000 12000 21000 26000 25000 6000 17000 16500 15000 23500 19000 12500 16000 28000 28000 13500 16000 20000 14500 12000 16500 20000 34500 18000 19500 17000 34500 20000 20500 20000 18500 14500 9000 16500 15000 20000 24000 15000 21500 2000 6 0 6 0 5 1 1 6 7.30 7.30 6.10 6.90 6.40 7.60 6 0 1 1 1 1 0 O 7 0 0 558 7 1 1 2 2 7.60 10 12 4 4 7 3 6 0 0 5 7 0 O 0 7 0 O 0 4 6 6 0 1 6 6 0 0 0 7 0 10 8 6 6 O 6 0 9 6 0 0.330 0.170 0.270 0.310 0.410 0.410 0.485 0.310 0.140 0.310 0.320 0.360 0.240 0.160 0.190 0.130 0.190 0.390 0.240 0.300 0.300 0.260 0.210 0.425 0.240 0.270 0.270 0.230 0.370 0.190 0.280 0.310 0.370 0.210 0.210 0.200 0.255 0.160 0.595 0.340 0.250 0.220 0.180 5 6 6 0 2 1 1 0 2 3 2 0 9 8 6 4 4 3 0 6 0 6 0 2 6 0 3 5 553 603 621 634 666 735 685 515 693 751 746 627 687 646 578 606 546 687 556 756 689 633 574 665 720 743 703 670 453 756 706 681 661 693 624 712 7.60 8.40 5.10 5.30 5.40 7.00 6.50 8.10 8.70 8.70 5.80 8.10 8.00 7.60 7.70 8.80 5.10 6.10 8.40 7.40 6.60 6.10 8.40 7.10 8.60 5.70 5.30 5.00 8.00 5.20 4.50 8 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 7 0 1 0 0 0 9 3 9 12 7 3 6 8 6 7 0 0 0 0 1 0 0 0 9 7 8 8 O 6 0 0 0 0 6 0 5 0 2 10 9 7 4 13 6 1 2 6 0 6 0 1 7 7 OOOOOO 0 6.70 5 11 6 5 8 6 0.250 0 7 0.180 0 5.20 6.20 1210 220 . 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Variable CreditScore Bureaulnquiries CreditUsage TotalCredit CollectionReports MissedPayments HomeOwner CreditAge TimeOnJob rescription score between 300 and 850 with larger numbers representing increased credit worthiness number of inquiries about an individual's credit percent of an individual's credit used total amount of credit available to individual number of times an unpaid bill was reported to collection agency number of missed payments 1 if individual is homeowner, O if not average age of individual's credit how long the individual has been continuously employed Activity/Question 2 : ((Datafile = CreditScore) The above datafile (in the "DATA" worksheet) provides the FICO credit scores for people with different values in 8 different corresponding fields (Bureaulnquiries, Credit Usage,... TimeOnJob). The description of each variable/feature is provided in the Description" worksheet. Your task is to explore and determine (after all the necessary analysis) the final, best model (equation) to be used to predict credit score. ..ie. which of the 8 fields/features are relevant and should be included in final the regression model(equation) to estimate the credit score and which features are to be excluded. Provide justifications and explanations for your choice/decision. [ 25 marks ] [Hint: Start with a model with all 8 features included. Then determine and explore which feature should be taken out to obtain a more accurate and/or simpler model. Use Adjusted-R-square to determine if a model is better or worse than another. ] Description Data III B F Home Owner 1 BureauInquiries 1 TimeOnJob 3 5 6 2 3 4 5 8 7 7 6 6 6 7 7 8 9 25585BERBRES DE 8 6 7 7 5 3 5 6.40 10 6 OOOOOOO 10 11 12 13 8 8 13 6 8 7 14 15 16 17 18 6 8 6 9 14 6 11 6 19 20 21 22 6 7 6 5 15 10 5 7.90 6 15 6 10 8 23 24 25 26 21 6 7 6 7 6 7 17500 0 7 28 29 30 31 32 33 4 7 8 7 8 11 13 7 7 9 4 7 8 8 7 34 35 6 5 36 37 38 CreditScore 656 696 693 729 695 708 682 719 678 707 646 640 615 779 577 746 651 763 658 589 791 681 821 641 710 726 718 749 668 762 693 748 693 702 600 578 619 730 617 641 729 710 703 729 678 775 485 624 693 635 742 753 777 733 652 748 681 697 715 685 696 691 577 652 673 628 714 619 819 626 679 613 C Credit Usage 0.270 0.300 0.280 0.230 0.230 0.280 0.320 0.270 0.300 0.220 0.270 0.230 0.180 0.160 0.420 0.170 0.480 0.660 0.340 0.310 0.660 0.310 0.260 0.670 0.270 0.250 0.240 0.280 0.270 0.320 0.240 0.140 0.250 0.120 0.270 0.280 0.390 0.330 0.240 0.240 0.230 0.240 0.310 0.240 0.230 0.180 0.450 0.460 0.310 0.190 0.190 0.250 0.160 0.180 0.200 0.250 0.210 0.190 0.380 0.200 0.220 0.190 0.470 0.380 0.240 0.350 0.260 0.250 0.230 0.2410 0.270 0.300 D E TotalCredit CollectionReports 18000 0 17000 0 20000 0 16000 0 16000 0 20000 0 8000 0 18000 0 17000 0 21500 0 21500 0 21000 0 19500 0 20000 0 32000 O 19000 0 5000 O 24000 0 22000 O 8000 0 24000 0 20000 0 20000 0 7000 0 20500 0 16000 0 0 18500 0 25000 0 18000 0 19500 0 17000 O 18000 O 17000 0 11000 0 23500 1 11500 0 16000 0 20500 0 20500 0 19500 0 19500 0 13000 O 13500 0 13000 1 15500 o 15000 1 12500 1 13000 0 18500 1 15500 0 14500 0 16500 0 17500 0 30500 0 17500 0 17000 O 13000 0 7500 O 18000 0 12000 0 13000 0 4500 0 7500 0 13500 O 5000 0 13000 7500 14500 15500 21500 1 12500 1 G H MissedPayments HomeOwner Credit Age 2 0 6.40 0 1 7.50 0 1 6.30 1 1 6.70 1 1 6.70 1 6.30 1 7.80 0 1 7.50 1 6.00 0 8.00 1 7.10 1 9.40 O 1 7.20 0 10.10 0 1 8.20 0 1 5.80 0 1 5.40 0 0 1 7.50 0 1 5.40 0 1 5.00 0 1 7.50 2 0 7.90 O 1 7.00 2 1 7.20 1 6.00 0 1 7.50 0 1 7.80 0 0 10.90 0 1 7.00 O 1 6.60 O 1 6.40 0 1 7.00 2 1 5,60 1 1 6.40 1 5.00 0 1 4.60 0 1 5.80 0 1 5.80 1 0 5.20 1 0 5.20 1 1 6.40 1 1 8.50 1 1 8.50 1 1 7.00 4 1 7.40 2 1 1 1 6.40 1 1 7.40 1 1 6.10 0 1 8.00 1 6.70 1 5.70 0 5.30 1 1 7.00 0 7.80 1 5.70 0 5.60 1 5.70 0 6.80 0 1 5.70 1 5.50 0 0 5.60 O 1 6.90 0 1 8.30 0 1 7.80 2 1 0 1 9.10 0 1 5.50 2 0 7.00 2 1 9.50 7 15 7 6 O 7 39 40 41 42 7 10 2 2 5 7 6 6 5 43 44 45 7 6 5 6 6 46 47 48 49 50 51 52 7 6 6 5 7 6 6 6 6 7.40 7 6 7 12 10 6 53 54 55 6 9 9 6 OOC 56 6 6 57 58 4 10 5 7 59 60 61 6 6 7 VOOOO 3 7 6 62 6 2 3 63 6 7 64 65 od 6 66 7 8 7 7 4 14 6 67 68 69 70 71 6 6 6 6.40 OOOO 6 9 5 4 5 7 6 6 72 73 B E 1 6 1 2 0 1 0 8 0 7 4 9 5 6 0 0 7 1 1 O 1 1 1 1 7 O 15 0 0 0 0 0 7 7 6 6 7 0 0 0 13 4 4 8 4 7 5 0 1 1 1 1 1 1 7 1 7 0 0 0 2 1 1 1 1 1 1 OOC 7 7 7 6 7 7 7 6 6 O 1 10.00 7.30 9.10 5.50 5.10 9.00 8.90 5.00 11.80 9.60 6.00 6.50 6.10 6.10 6.10 7.10 6.10 6.10 6.10 7.00 6.80 6.80 6.50 6.60 7.40 5.20 4.30 3 3 3 6 3 3 1 0 0 0 0 0.270 0.230 0.230 0.240 0.180 0.320 0.180 0.510 0.220 0.200 0.340 0.220 0.430 0.410 0.390 0.250 0.430 0.440 0.390 0.270 0.240 0.210 0.170 0.260 0.340 0.265 0.360 0.340 0.250 0.120 0.210 0.305 0.250 0.130 0.120 0.230 0 0 0 0 1 1 3 0 0 0 0 1 1 3 4 11 14 11 6 0 7 583 657 816 563 736 714 629 567 703 661 575 705 597 733 743 663 630 742 682 579 761 741 731 746 650 705 527 687 622 588 561 593 573 651 570 676 664 608 706 546 648 571 557 510 746 666 0 1 0 7 0 2 4 3 0 2 6 8 1 0 O 0 9 0 0 0 0 2 2 6 7 7 7.40 1 0 0 1 2 1 1 6 1 3 7 1 0 6.30 6.20 5.20 6.00 6.30 5.60 6.20 8.30 1 0 0 7 7 7 7 7 1 0 0 1 0.230 8.30 11 7 3 4 5 5 4 4 4 5 4 4 7 3 3 4 4 4 2 2 0 3 2 2 2 1 4 2 1 1 6 1 1 1 1 1 0 0 0 1 6 7 7 74 75 76 7 78 79 80 81 82 83 81 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 10+ 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 151 155 157 9.90 5.40 7.70 1 0 7.60 15000 24000 14500 15500 18000 17000 16000 15000 15500 18000 11000 15000 31500 30000 30500 15500 30500 30000 31500 22500 16500 16500 16000 13500 33000 18000 24000 33000 19500 17000 14000 21000 19500 17000 18000 17500 17500 15000 27000 24000 25000 18000 18000 7000 12000 21000 26000 25000 6000 17000 16500 15000 23500 19000 12500 16000 28000 28000 13500 16000 20000 14500 12000 16500 20000 34500 18000 19500 17000 34500 20000 20500 20000 18500 14500 9000 16500 15000 20000 24000 15000 21500 2000 6 0 6 0 5 1 1 6 7.30 7.30 6.10 6.90 6.40 7.60 6 0 1 1 1 1 0 O 7 0 0 558 7 1 1 2 2 7.60 10 12 4 4 7 3 6 0 0 5 7 0 O 0 7 0 O 0 4 6 6 0 1 6 6 0 0 0 7 0 10 8 6 6 O 6 0 9 6 0 0.330 0.170 0.270 0.310 0.410 0.410 0.485 0.310 0.140 0.310 0.320 0.360 0.240 0.160 0.190 0.130 0.190 0.390 0.240 0.300 0.300 0.260 0.210 0.425 0.240 0.270 0.270 0.230 0.370 0.190 0.280 0.310 0.370 0.210 0.210 0.200 0.255 0.160 0.595 0.340 0.250 0.220 0.180 5 6 6 0 2 1 1 0 2 3 2 0 9 8 6 4 4 3 0 6 0 6 0 2 6 0 3 5 553 603 621 634 666 735 685 515 693 751 746 627 687 646 578 606 546 687 556 756 689 633 574 665 720 743 703 670 453 756 706 681 661 693 624 712 7.60 8.40 5.10 5.30 5.40 7.00 6.50 8.10 8.70 8.70 5.80 8.10 8.00 7.60 7.70 8.80 5.10 6.10 8.40 7.40 6.60 6.10 8.40 7.10 8.60 5.70 5.30 5.00 8.00 5.20 4.50 8 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 7 0 1 0 0 0 9 3 9 12 7 3 6 8 6 7 0 0 0 0 1 0 0 0 9 7 8 8 O 6 0 0 0 0 6 0 5 0 2 10 9 7 4 13 6 1 2 6 0 6 0 1 7 7 OOOOOO 0 6.70 5 11 6 5 8 6 0.250 0 7 0.180 0 5.20 6.20 1210 220 . 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Variable CreditScore Bureaulnquiries CreditUsage TotalCredit CollectionReports MissedPayments HomeOwner CreditAge TimeOnJob rescription score between 300 and 850 with larger numbers representing increased credit worthiness number of inquiries about an individual's credit percent of an individual's credit used total amount of credit available to individual number of times an unpaid bill was reported to collection agency number of missed payments 1 if individual is homeowner, O if not average age of individual's credit how long the individual has been continuously employed
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started