A:= < <0,-1,1>| <4,0,-2>| <2,-1,0>| <2,1,1>>; Matrix(3, 4, [[0, 4, 2, 2], [-1, 0, -1, 1], [1, -2, 0, 1]]) (a) Use the concept of
A:=<<0,-1,1>|<4,0,-2>|<2,-1,0>|<2,1,1>>;
Matrix(3, 4, [[0, 4, 2, 2], [-1, 0, -1, 1], [1, -2, 0, 1]])
(a) Use the concept of matrix Rank to argue, without performing ANY calculation, why the columns of this matrix canNOT be linerly independent.
(b) Use Gauss-Jordan elimination method (you can use ReducedRowEchelonForm command) to identify a set B of linearly independent column vectors of A that span the column space of A. Express the column vectors of A that are not included in the set B as a linear combination of the vectors in the set B.
(c) Do the columns of matrix A span the entire Euclidean space "real^3" ? Explain why yes or why not.
Step by Step Solution
3.51 Rating (154 Votes )
There are 3 Steps involved in it
Step: 1
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started