Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Answer the attached. question below. Simple linear regression is a statistical method that allows us to summarize and study relationships between two continuous (quantitative) variables:

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed

Answer the attached. question below.

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
Simple linear regression is a statistical method that allows us to summarize and study relationships between two continuous (quantitative) variables: One variable, denoted X, is regarded as the predictor, explanatory, or independent variable. The other variable, denoted Y, is regarded as the response, outcome, or dependent variable. Suppose that we are given n-i.i.d observations { (x;, y;)}"_, from the assumed simple linear regression model Y = BIX + Bo + . Answer the following questions on simple linear regression. 5-a. Denote 1 and Bo as the point estimators of B, and Bo, respectively, that are obtained through the least squares method. Show, step by step, that the two point estimators are unbiased. Derive the least squares estimator of of and determine whether it is unbiased or not. Show your work step by step. 5-b. Calculate _'_1(yi - Bix; - Bo) (Bix, + Bo). Determine whether the point (X, Y) is on the line Y = 1X + Bo. Explain your reasoning mathematically. 5-c. Using the maximum likelihood estimation (MLE) technique, derive a point estimator for the coefficient B1 and the intercept Bo, respectively. Determine whether the point estimators that you obtained via MLE are unbiased or not. Justify your conclusion mathematically. 5-d. Calculate the variance of the four estimators from Questions 5-a and 5-c, respectively. Show your work step by step. 5-e. Suppose that we are using the simple linear regression model Y = B1 X + Bo + 1 while the true model is Y = 1X1 + B2X2 + Bo + 82 where Bo, B1, and B2 are constants. We assume that the distributions of &, and e2 are both N(0,02), i.e., normal distribution with variance o?. We further assume that the two noise variables are uncorrelated. Find the least squares estimator of B, in this case and determine whether the point estimator that you obtain is biased or not. If it is biased, calculate the bias.Question 1 (understanding mean and variance of linear combinations of random variables) Let T_15 be the percentage of adult males who used tobacco products in 2015 in a country and T_10 be this percentage in 2010 in the same country. Define the random variable Z in the following way: Z =T_15 -T_10. We do not observe T_15 and T_10 for all countries of the world. We can only hope to get data from a random sample of n countries, where n is much smaller than the number of countries in the world. We want to estimate the E (Z) for the distribution of countries in the world. Each group member should attempt one of the following questions. The group can consult and improve the answer and only submit the improved answer, but the original person who attempted each part must be named. 1. What does the hypothesis E (Z) = 0 mean? After explaining what this hypothesis means, describe whether or not E (Z) = 0 implies T_15 = T_10 in every country in the world. Then, describe whether or not E (Z) = 0 implies -Er_15; = -Er_10; 1= 1 1= 1 for the n countries in the sample [Note that "Yes it does" or "No it doesn't" are not sufficient, you are expected to justify your answer.] 2. Using the result that sample average is an unbiased estimator of the population mean, show that iz = MET_15; - MELT_10; is an unbiased estimator of E (Z) . 3. Using the result that the variance of the sample average of a random sample of n observations from a distribution with mean / and variance o' is , compute the variance of /z = > >_,T_15; - " Ein T_10;, for a random sample of n = 40 countries, when Var (T_15) = Var(T_10) = 100, and p the correlation coefficient between 7_15 and T_10 is 0.8. 4. Suppose that we have obtained data on T_15 and T_10 for a sample n countries and computed Z; =T_15; -T_10; for i = 1, ..., n. Using the matrix formula for the OLS estimator, show that if we regress this variable on a constant only, the OLS estimate of the constant will be ! )_, T_15;- = ELIT_10.Question 1 (understanding mean and variance of linear combinations of random variables) Let T_15 be the percentage of adult males who used tobacco products in 2015 in a country and T_10 be this percentage in 2010 in the same country. Define the random variable Z in the following way: Z =T_15 -T_10. We do not observe T_15 and T_10 for all countries of the world. We can only hope to get data from a random sample of n countries, where n is much smaller than the number of countries in the world. We want to estimate the E (Z) for the distribution of countries in the world. Each group member should attempt one of the following questions. The group can consult and improve the answer and only submit the improved answer, but the original person who attempted each part must be named. 1. What does the hypothesis E (Z) = 0 mean? After explaining what this hypothesis means, describe whether or not E (Z) = 0 implies T_15 = T_10 in every country in the world. Then, describe whether or not E (Z) = 0 implies -Er_15; = -Er_10; 1= 1 1= 1 for the n countries in the sample [Note that "Yes it does" or "No it doesn't" are not sufficient, you are expected to justify your answer.] 2. Using the result that sample average is an unbiased estimator of the population mean, show that iz = MET_15; - MELT_10; is an unbiased estimator of E (Z) . 3. Using the result that the variance of the sample average of a random sample of n observations from a distribution with mean / and variance o' is , compute the variance of /z = > >_,T_15; - " Ein T_10;, for a random sample of n = 40 countries, when Var (T_15) = Var(T_10) = 100, and p the correlation coefficient between 7_15 and T_10 is 0.8. 4. Suppose that we have obtained data on T_15 and T_10 for a sample n countries and computed Z; =T_15; -T_10; for i = 1, ..., n. Using the matrix formula for the OLS estimator, show that if we regress this variable on a constant only, the OLS estimate of the constant will be ! )_, T_15;- = ELIT_10.The Pristine River Case The Pristine River has two polluting firms on its banks. Acme Industrial and Creative Chemicals each dump 100 tons of glop into the river each year. The cost of reducing glop emissions per ton equals $10 for Acme and $100 for Creative. The local government wants to reduce overall pollution from 200 tons to 50 tons. a. If the government knew the cost of reduction for each firm, what reductions would it impose to reach its overall goal? What would be the cost to each firm and the total cost to the firms together? b. In a more typical situation, the government would not know the cost of pollution reduction at each firm. If the government decided to reach its overall goal by imposing uniform reductions on the firms, calculate the reduction made by each firm, the cost to each firm, and the total cost to the firms together. c. Compare the total cost of pollution reduction in parts (a) and (b). If the government does not know the cost of reduction for each firm, is there still some way for it to reduce pollution to 50 tons at the total cost you calculated in part (a)? Explain.1. The following market demand and firm cost conditions describe a perfectly competitive industry p = 1000 - 0.001Q TO = 20q - 0.2q2 + 0.001q where TC is total cost. All firms are identical. Determine the long-run equilibrium price (p), market output (Q), firm output (q) and number of (identical) firms. (Hint: marginal cost is MC = 20 - 0.4g + 0.003q?) (10 marks) 2. The City of Calgary has a more or less free market in taxi service. Any respectable firm can provide taxi service as long as the drivers and cabs satisfy certain safety standards. Let us suppose that there is a constant marginal cost and average cost per trip of a taxi ride equal to $5 and that the average taxi has a capacity of 20 trips per day. Let the market demand function for taxi rides be given by Q = D(p) = 1100 - 20p, where demand is measured as rides per day and price is measured in dollars. Assume that the industry is perfectly competitive (a) What is the competitive equilibrium price per ride? What is the equilibrium number of rides per day? What is the minimum number of taxi cabs in equilibrium? (5 marks) (b) During the Calgary Stampede, the influx of tourists raises the demand for taxi rides to D(p) = 1500 - 20p. Find the following magnitudes, based on the assumption that for these 10 days in July, the number of taxicabs is fixed and equal to the minimum number found in part (a): equilibrium number of rides per day and profit per cab per day. (4 marks) (c) Now suppose that the change in demand for taxicabs in part (b) is permanent. Find the new equilibrium price, equilibrium number of rides per day, and profit per cab per day. How many taxi cabs will be operating in equilibrium? How does the new equilibrium compare to the equilibrium found in part (b). Explain why the answer found here in part (c) differs from the answer found in part (b). (4 marks) 3. Suppose that there are four identical firms in the market, each having a marginal cost given by: MC(q) = where q is the output of an individual firm. The market inverse demand is given by: P = 200 - .5Q where Q is the total amount sold in the market. (a) What is the supply curve of the industry when there is competition between the four firms?

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Business Its Legal Ethical and Global Environment

Authors: Marianne M. Jennings

11th edition

1337103578, 978-1337514392, 133751439X, 978-0357690130, 978-1337103572

More Books

Students also viewed these Economics questions

Question

Explain the experimental method as used by clinical psychologists.

Answered: 1 week ago

Question

6. What information processes operate in communication situations?

Answered: 1 week ago

Question

3. How can we use information and communication to generate trust?

Answered: 1 week ago