Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

As the very first rudiment of climatology, estimate the temperature of Earth. Assume it is a perfect sphere and its temperature is uniform. Ignore

As the very first rudiment of climatology, estimate the temperature of Earth. Assume it is a perfect sphere and its temperature is uniform. Ignore the greenhouse effect. Thermal radiation from the Sun has an intensity (the "solar constant" S) of about 1370 W/m2 at the radius of Earth's orbit. (a) Assuming the Sun's rays are parallel, what area must S be multiplied by to get the total radiation intercepted by Earth? It will be easiest to answer in terms of Earth's radius, R. (b) Assume that Earth reflects about 30% of the solar energy it intercepts. In other words, Earth has an albedo with a value of A = 0.3. In terms of S, A, and R, what is the rate at which Earth absorbs energy from the Sun? (c) Find the temperature at which Earth radiates energy at the same rate. Assume that at the infrared wavelengths where it radiates, the emissivity e is 1. Does your result show that the greenhouse effect is important? (d) How does your answer depend on the the area of Earth? a. In terms of Earth's radius, the constant o, and the unknown temperature Ts of the surface, what is the power of the infrared radiation from the surface? b. What is the power of Earth's radiation absorbed by the atmosphere? c. In terms of the unknown temperature Te of the atmosphere, what is the power radiated from the atmosphere? d. Write an equation that says the power of the radiation the atmosphere absorbs from Earth equals the power of the radiation it emits. e. Half of the power radiated by the atmosphere hits Earth. Write an equation that says that the power Earth absorbs from the atmosphere and the Sun equals the power that it emits. f. Solve your two equations for the unknown temperature of Earth. For steps that make this model less crude, see for example the lectures (https://openstaxcollege.org// 21paulgormlec) by Paul O'Gorman.

Step by Step Solution

3.56 Rating (149 Votes )

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Principles of heat transfer

Authors: Frank Kreith, Raj M. Manglik, Mark S. Bohn

7th Edition

495667706, 978-0495667704

More Books

Students also viewed these Physics questions