Question
Assume that this is the beginning of year 2014 and you have joined a retail giant in France, a few days ago, as a marketing
Assume that this is the beginning of year 2014 and you have joined a retail giant in France, a few days ago, as a marketing manager. You have been tasked with forecasting the sales for year 2014. Just to make yourself aware of the past sales figures, you request your secretary to provide you with the sales figures for the past ten years. She complies with your request and provides data in an excel sheet. While looking at the sheet, you notice that food sales are categorized into 1) Super market and grocery stores, 2) Drink sales, and 3) Other specialized food retailing items. Each of the above-mentioned data is given in a separate column (i.e., columns C-E). The last column contains the total of the three categories. Your manager has specifically requested to provide a report that contains all important observations, your analysis, decisions made along with justifications, forecasts, and interpretations. Part B: After following above-mentioned steps, you were very happy with your progress and decided to write a report and present it to your boss. One of your friends came to visit you while you were writing your report. He asked a very interesting question that made you think to do further investigation. His asked, Is it necessary to estimate year 11 values by using the Total Food retailing data? Why cant you forecast the values for each of the categories individually and then add them together to come up with final forecasts? You ponder upon his question and then decide to make forecast for each of the categories and then combine forecasts. That means that now, a) for each of the categories of retails sales (supermarket, drink and specialized categories), you need to split data and follow the steps (a, c, d). b) pick the best models, combine their forecasts for year 9 & 10, and c) compare it with the best model that you obtained in Part A. You should finally provide in your analysis which method is a good one i.e., using Total food retailing data or Combining individual forecasts of each category.
Excel Data is below:
Series ID | Time | Bitmap Supermarket and grocery stores | Drinks retailing | Other specialised food retailing | Total Food retailing |
Jan-2004 | 1 | 1533.8 | 143.0 | 231.3 | 1908.1 |
Feb-2004 | 2 | 1413.3 | 128.7 | 215.4 | 1757.4 |
Mar-2004 | 3 | 1472.1 | 140.8 | 228.6 | 1841.5 |
Apr-2004 | 4 | 1469.1 | 141.5 | 234.5 | 1845.1 |
May-2004 | 5 | 1475.3 | 133.0 | 221.4 | 1829.7 |
Jun-2004 | 6 | 1412.5 | 133.4 | 218.5 | 1764.4 |
Jul-2004 | 7 | 1508.5 | 138.4 | 224.6 | 1871.5 |
Aug-2004 | 8 | 1476.3 | 135.9 | 228.2 | 1840.4 |
Sep-2004 | 9 | 1490.9 | 142.0 | 226.1 | 1859.0 |
Oct-2004 | 10 | 1542.3 | 148.2 | 236.4 | 1926.9 |
Nov-2004 | 11 | 1513.4 | 153.7 | 248.1 | 1915.2 |
Dec-2004 | 12 | 1717.9 | 226.9 | 296.5 | 2241.3 |
Jan-2005 | 13 | 1535.2 | 145.7 | 239.3 | 1920.2 |
Feb-2005 | 14 | 1416.9 | 139.3 | 225.1 | 1781.3 |
Mar-2005 | 15 | 1555.3 | 155.9 | 247.7 | 1958.9 |
Apr-2005 | 16 | 1481.8 | 149.3 | 244.5 | 1875.6 |
May-2005 | 17 | 1473.0 | 143.1 | 242.9 | 1859.0 |
Jun-2005 | 18 | 1452.0 | 142.8 | 238.6 | 1833.4 |
Jul-2005 | 19 | 1546.2 | 144.4 | 245.9 | 1936.5 |
Aug-2005 | 20 | 1553.4 | 150.3 | 251.9 | 1955.6 |
Sep-2005 | 21 | 1545.8 | 157.6 | 246.8 | 1950.2 |
Oct-2005 | 22 | 1593.8 | 177.8 | 267.2 | 2038.8 |
Nov-2005 | 23 | 1558.3 | 194.7 | 271.7 | 2024.7 |
Dec-2005 | 24 | 1776.1 | 279.9 | 316.0 | 2372.0 |
Jan-2006 | 25 | 1585.2 | 171.9 | 287.0 | 2044.1 |
Feb-2006 | 26 | 1480.1 | 157.6 | 265.7 | 1903.4 |
Mar-2006 | 27 | 1635.1 | 174.7 | 291.5 | 2101.3 |
Apr-2006 | 28 | 1582.7 | 172.2 | 268.2 | 2023.1 |
May-2006 | 29 | 1572.3 | 173.0 | 261.7 | 2007.0 |
Jun-2006 | 30 | 1557.4 | 164.7 | 253.6 | 1975.7 |
Jul-2006 | 31 | 1591.7 | 171.1 | 264.8 | 2027.6 |
Aug-2006 | 32 | 1636.0 | 173.6 | 273.6 | 2083.2 |
Sep-2006 | 33 | 1614.7 | 181.7 | 269.1 | 2065.5 |
Oct-2006 | 34 | 1677.0 | 189.3 | 289.6 | 2155.9 |
Nov-2006 | 35 | 1683.8 | 206.5 | 289.6 | 2179.9 |
Dec-2006 | 36 | 1873.0 | 296.5 | 341.9 | 2511.4 |
Jan-2007 | 37 | 1684.4 | 191.2 | 304.6 | 2180.2 |
Feb-2007 | 38 | 1557.4 | 179.7 | 288.8 | 2025.9 |
Mar-2007 | 39 | 1740.8 | 194.9 | 311.3 | 2247.0 |
Apr-2007 | 40 | 1649.9 | 191.4 | 307.1 | 2148.4 |
May-2007 | 41 | 1678.0 | 183.3 | 304.0 | 2165.3 |
Jun-2007 | 42 | 1642.0 | 173.5 | 279.5 | 2095.0 |
Jul-2007 | 43 | 1695.7 | 182.1 | 300.1 | 2177.9 |
Aug-2007 | 44 | 1762.9 | 189.9 | 308.5 | 2261.3 |
Sep-2007 | 45 | 1740.8 | 204.4 | 296.2 | 2241.4 |
Oct-2007 | 46 | 1853.8 | 204.5 | 276.8 | 2335.1 |
Nov-2007 | 47 | 1897.1 | 217.3 | 272.0 | 2386.4 |
Dec-2007 | 48 | 2054.7 | 309.9 | 322.6 | 2687.2 |
Jan-2008 | 49 | 1849.9 | 214.9 | 239.7 | 2304.5 |
Feb-2008 | 50 | 1747.1 | 184.3 | 229.9 | 2161.3 |
Mar-2008 | 51 | 1881.1 | 210.3 | 241.3 | 2332.7 |
Apr-2008 | 52 | 1737.5 | 200.4 | 223.8 | 2161.7 |
May-2008 | 53 | 1827.4 | 196.9 | 234.7 | 2259.0 |
Jun-2008 | 54 | 1729.5 | 195.4 | 221.4 | 2146.3 |
Jul-2008 | 55 | 1789.9 | 179.5 | 238.0 | 2207.4 |
Aug-2008 | 56 | 1822.2 | 176.8 | 250.0 | 2249.0 |
Sep-2008 | 57 | 1729.8 | 179.2 | 243.7 | 2152.7 |
Oct-2008 | 58 | 1875.8 | 214.1 | 250.6 | 2340.5 |
Nov-2008 | 59 | 1899.4 | 222.8 | 254.7 | 2376.9 |
Dec-2008 | 60 | 2121.2 | 310.8 | 320.6 | 2752.6 |
Jan-2009 | 61 | 1988.7 | 242.9 | 236.1 | 2467.7 |
Feb-2009 | 62 | 1758.5 | 194.0 | 222.5 | 2175.0 |
Mar-2009 | 63 | 1928.8 | 215.0 | 243.3 | 2387.1 |
Apr-2009 | 64 | 1878.4 | 213.6 | 241.6 | 2333.6 |
May-2009 | 65 | 1896.7 | 211.3 | 238.4 | 2346.4 |
Jun-2009 | 66 | 1806.5 | 206.0 | 230.6 | 2243.1 |
Jul-2009 | 67 | 1876.0 | 201.4 | 237.1 | 2314.5 |
Aug-2009 | 68 | 1905.5 | 208.7 | 245.2 | 2359.4 |
Sep-2009 | 69 | 1871.8 | 206.1 | 241.0 | 2318.9 |
Oct-2009 | 70 | 2013.3 | 218.5 | 266.1 | 2497.9 |
Nov-2009 | 71 | 2111.7 | 236.1 | 275.6 | 2623.4 |
Dec-2009 | 72 | 2265.7 | 325.9 | 342.0 | 2933.6 |
Jan-2010 | 73 | 2053.5 | 233.7 | 255.4 | 2542.6 |
Feb-2010 | 74 | 1817.4 | 199.0 | 215.5 | 2231.9 |
Mar-2010 | 75 | 2017.7 | 222.6 | 229.6 | 2469.9 |
Apr-2010 | 76 | 1951.1 | 222.2 | 214.4 | 2387.7 |
May-2010 | 77 | 1988.6 | 213.4 | 224.5 | 2426.5 |
Jun-2010 | 78 | 1888.2 | 206.3 | 205.6 | 2300.1 |
Jul-2010 | 79 | 2035.8 | 206.7 | 198.7 | 2441.2 |
Aug-2010 | 80 | 2012.8 | 212.9 | 203.3 | 2429.0 |
Sep-2010 | 81 | 1984.2 | 224.3 | 203.2 | 2411.7 |
Oct-2010 | 82 | 2075.9 | 238.7 | 214.4 | 2529.0 |
Nov-2010 | 83 | 2159.7 | 251.2 | 201.4 | 2612.3 |
Dec-2010 | 84 | 2360.1 | 380.0 | 251.8 | 2991.9 |
Jan-2011 | 85 | 2157.3 | 250.0 | 205.8 | 2613.1 |
Feb-2011 | 86 | 1953.8 | 216.8 | 194.6 | 2365.2 |
Mar-2011 | 87 | 2108.1 | 240.5 | 200.4 | 2549.0 |
Apr-2011 | 88 | 2062.3 | 244.4 | 196.2 | 2502.9 |
May-2011 | 89 | 2034.8 | 232.1 | 185.9 | 2452.8 |
Jun-2011 | 90 | 1988.6 | 223.6 | 183.2 | 2395.4 |
Jul-2011 | 91 | 2085.9 | 239.0 | 188.5 | 2513.4 |
Aug-2011 | 92 | 2093.4 | 245.7 | 192.4 | 2531.5 |
Sep-2011 | 93 | 2074.0 | 251.6 | 188.5 | 2514.1 |
Oct-2011 | 94 | 2168.9 | 264.3 | 197.6 | 2630.8 |
Nov-2011 | 95 | 2128.7 | 282.9 | 201.4 | 2613.0 |
Dec-2011 | 96 | 2397.4 | 409.6 | 257.2 | 3064.2 |
Jan-2012 | 97 | 2138.1 | 265.2 | 188.1 | 2591.4 |
Feb-2012 | 98 | 2013.9 | 239.4 | 200.1 | 2453.4 |
Mar-2012 | 99 | 2174.6 | 259.6 | 199.7 | 2633.9 |
Apr-2012 | 100 | 2082.6 | 247.1 | 214.5 | 2544.2 |
May-2012 | 101 | 2109.8 | 243.3 | 216.2 | 2569.3 |
Jun-2012 | 102 | 2064.9 | 238.2 | 208.6 | 2511.7 |
Jul-2012 | 103 | 2097.8 | 243.2 | 204.5 | 2545.5 |
Aug-2012 | 104 | 2167.7 | 255.7 | 213.9 | 2637.3 |
Sep-2012 | 105 | 2111.5 | 261.9 | 211.7 | 2585.1 |
Oct-2012 | 106 | 2200.2 | 265.8 | 230.6 | 2696.6 |
Nov-2012 | 107 | 2188.8 | 283.4 | 219.5 | 2691.7 |
Dec-2012 | 108 | 2425.6 | 400.3 | 276.2 | 3102.1 |
Jan-2013 | 109 | 2231.5 | 274.1 | 234.5 | 2740.1 |
Feb-2013 | 110 | 2021.8 | 231.7 | 226.2 | 2479.7 |
Mar-2013 | 111 | 2267.2 | 273.4 | 233.4 | 2774.0 |
Apr-2013 | 112 | 2117.1 | 256.1 | 234.4 | 2607.6 |
May-2013 | 113 | 2186.5 | 250.0 | 243.0 | 2679.5 |
Jun-2013 | 114 | 2104.6 | 241.9 | 228.7 | 2575.2 |
Jul-2013 | 115 | 2155.7 | 248.7 | 235.9 | 2640.3 |
Aug-2013 | 116 | 2244.2 | 264.6 | 247.8 | 2756.6 |
Sep-2013 | 117 | 2157.0 | 262.8 | 240.2 | 2660.0 |
Oct-2013 | 118 | 2299.5 | 264.4 | 244.5 | 2808.4 |
Nov-2013 | 119 | 2271.3 | 271.5 | 232.2 | 2775.0 |
Dec-2013 | 120 | 2612.8 | 394.5 | 270.9 | 3278.2 |
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started