Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Assume that Wal-Mart Stores, Inc. has decided to surface and maintain for 10 years a vacant lot next to one of its stores to serve

image text in transcribed

Assume that Wal-Mart Stores, Inc. has decided to surface and maintain for 10 years a vacant lot next to one of its stores to serve as a parking lot for customers. Management is considering the following bids involving two different qualities of surfacing for a parking area of 12,400 square yards.

Bid A: A surface that costs $6.00 per square yard to install. This surface will have to be replaced at the end of 5 years. The annual maintenance cost on this surface is estimated at 25 cents per square yard for each year except the last year of its service. The replacement surface will be similar to the initial surface.

Bid B: A surface that costs $10.75 per square yard to install. This surface has a probable useful life of 10 years and will require annual maintenance in each year except the last year, at an estimated cost of 9 cents per square yard.

=

Compute present value of the bids. You may assume that the cost of capital is 9%, that the annual maintenance expenditures are incurred at the end of each year, and that prices are not expected to change during the next 10 years. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.)

Present value of outflows for Bid A$________________

Present value of outflows for Bid B$_____________________

image text in transcribed INTEREST TABLES AND THEIR CONTENTS 1.FUTURE VALUE OF 1 TABLE. Contains the amounts to which 1 will accumulate if deposited now at a specified rate and left for a specified number of periods (Table 6.1). Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2% 1.02000 1.04040 1.06121 1.08243 1.10408 1.12616 1.14869 1.17166 1.19509 1.21899 1.24337 1.26824 1.29361 1.31948 1.34587 1.37279 1.40024 1.42825 1.45681 1.48595 1.51567 1.54598 1.57690 1.60844 1.64061 1.67342 1.70689 1.74102 2% 1.02500 1.05063 1.07689 1.10381 1.13141 1.15969 1.18869 1.21840 1.24886 1.28008 1.31209 1.34489 1.37851 1.41297 1.44830 1.48451 1.52162 1.55966 1.59865 1.63862 1.67958 1.72157 1.76461 1.80873 1.85394 1.90029 1.94780 1.99650 3% 1.03000 1.06090 1.09273 1.12551 1.15927 1.19405 1.22987 1.26677 1.30477 1.34392 1.38423 1.42576 1.46853 1.51259 1.55797 1.60471 1.65285 1.70243 1.75351 1.80611 1.86029 1.91610 1.97359 2.03279 2.09378 2.15659 2.22129 2.28793 4% 1.04000 1.08160 1.12486 1.16986 1.21665 1.26532 1.31593 1.36857 1.42331 1.48024 1.53945 1.60103 1.66507 1.73168 1.80094 1.87298 1.94790 2.02582 2.10685 2.19112 2.27877 2.36992 2.46472 2.56330 2.66584 2.77247 2.88337 2.99870 5% 1.05000 1.10250 1.15763 1.21551 1.27628 1.34010 1.40710 1.47746 1.55133 1.62889 1.71034 1.79586 1.88565 1.97993 2.07893 2.18287 2.29202 2.40662 2.52695 2.65330 2.78596 2.92526 3.07152 3.22510 3.38635 3.55567 3.73346 3.92013 6% 1.06000 1.12360 1.19102 1.26248 1.33823 1.41852 1.50363 1.59385 1.68948 1.79085 1.89830 2.01220 2.13293 2.26090 2.39656 2.54035 2.69277 2.85434 3.02560 3.20714 3.39956 3.60354 3.81975 4.04893 4.29187 4.54938 4.82235 5.11169 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 1 29 30 31 32 33 34 35 36 37 38 39 40 8% 1.08000 1.16640 1.25971 1.36049 1.46933 1.58687 1.71382 1.85093 1.99900 2.15892 2.33164 2.51817 2.71962 2.93719 3.17217 3.42594 3.70002 3.99602 4.31570 2% 1.02000 1.77584 1.81136 1.84759 1.88454 1.92223 1.96068 1.99989 2.03989 2.08069 2.12230 2.16474 2.20804 9% 1.09000 1.18810 1.29503 1.41158 1.53862 1.67710 1.82804 1.99256 2.17189 2.36736 2.58043 2.81267 3.06581 3.34173 3.64248 3.97031 4.32763 4.71712 5.14166 2% 1.02500 2.04641 2.09757 2.15001 2.20376 2.25885 2.31532 2.37321 2.43254 2.49335 2.55568 2.61957 2.68506 10% 1.10000 1.21000 1.33100 1.46410 1.61051 1.77156 1.94872 2.14359 2.35795 2.59374 2.85312 3.13843 3.45227 3.79750 4.17725 4.59497 5.05447 5.55992 6.11591 3% 1.03000 2.35657 2.42726 2.50008 2.57508 2.65234 2.73191 2.81386 2.89828 2.98523 3.07478 3.16703 3.26204 11% 1.11000 1.23210 1.36763 1.51807 1.68506 1.87041 2.07616 2.30454 2.55803 2.83942 3.15176 3.49845 3.88328 4.31044 4.78459 5.31089 5.89509 6.54355 7.26334 4% 1.04000 3.11865 3.24340 3.37313 3.50806 3.64838 3.79432 3.94609 4.10393 4.26809 4.43881 4.61637 4.80102 12% 1.12000 1.25440 1.40493 1.57352 1.76234 1.97382 2.21068 2.47596 2.77308 3.10585 3.47855 3.89598 4.36349 4.88711 5.47357 6.13039 6.86604 7.68997 8.61276 5% 1.05000 4.11614 4.32194 4.53804 4.76494 5.00319 5.25335 5.51602 5.79182 6.08141 6.38548 6.70475 7.03999 15% 1.15000 1.32250 1.52088 1.74901 2.01136 2.31306 2.66002 3.05902 3.51788 4.04556 4.65239 5.35025 6.15279 7.07571 8.13706 9.35762 10.76126 12.37545 14.23177 6% 1.06000 5.41839 5.74349 6.08810 6.45339 6.84059 7.25103 7.68609 8.14725 8.63609 9.15425 9.70351 10.28572 (n) Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 1 4.66096 5.03383 5.43654 5.87146 6.34118 6.84847 7.39635 7.98806 8.62711 9.31727 10.06266 10.86767 11.73708 12.67605 13.69013 14.78534 15.96817 17.24563 18.62528 20.11530 21.72452 2% 1.02000 5.60441 6.10881 6.65860 7.25787 7.91108 8.62308 9.39916 10.24508 11.16714 12.17218 13.26768 14.46177 15.76333 17.18203 18.72841 20.41397 22.25123 24.25384 26.43668 28.81598 31.40942 2% 1.02500 6.72750 7.40025 8.14028 8.95430 9.84973 10.83471 11.91818 13.10999 14.42099 15.86309 17.44940 19.19434 21.11378 23.22515 25.54767 28.10244 30.91268 34.00395 37.40434 41.14479 45.25926 3% 1.03000 8.06231 8.94917 9.93357 11.02627 12.23916 13.58546 15.07986 16.73865 18.57990 20.62369 22.89230 25.41045 28.20560 31.30821 34.75212 38.57485 42.81808 47.52807 52.75616 58.55934 65.00087 4% 1.04000 9.64629 10.80385 12.10031 13.55235 15.17863 17.00000 19.04007 21.32488 23.88387 26.74993 29.95992 33.55511 37.58173 42.09153 47.14252 52.79962 59.13557 66.23184 74.17966 83.08122 93.05097 5% 1.05000 16.36654 18.82152 21.64475 24.89146 28.62518 32.91895 37.85680 43.53532 50.06561 57.57545 66.21177 76.14354 87.56507 100.69983 115.80480 133.17552 153.15185 176.12463 202.54332 232.92482 267.86355 6% 1.06000 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 2.PRESENT VALUE OF 1 TABLE. Contains the amounts that must be deposited now at a specified rate of interest to equal 1 at the end of a specified number of periods (Table 6.2). Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 1 2 3 4 2% .98039 .96117 .94232 .92385 2% .97561 .95181 .92860 .90595 3% .97087 .94260 .91514 .88849 4% .96154 .92456 .88900 .85480 5% .95238 .90703 .86384 .82270 6% .94340 .89000 .83962 .79209 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 2% .98039 .90573 .88797 .87056 .85349 .83676 .82035 .80426 .78849 .77303 .75788 .74301 .72845 .71416 .70016 .68643 .67297 .65978 .64684 .63416 .62172 .60953 .59758 .58586 .57437 .56311 .55207 .54125 .53063 .52023 .51003 .50003 .49022 2% .97561 .88385 .86230 .84127 .82075 .80073 .78120 .76214 .74356 .72542 .70773 .69047 .67362 .65720 .64117 .62553 .61027 .59539 .58086 .56670 .55288 .53939 .52623 .51340 .50088 .48866 .47674 .46511 .45377 .44270 .43191 .42137 .41109 3% .97087 .86261 .83748 .81309 .78941 .76642 .74409 .72242 .70138 .68095 .66112 .64186 .62317 .60502 .58739 .57029 .55368 .53755 .52189 .50669 .49193 .47761 .46369 .45019 .43708 .42435 .41199 .39999 .38834 .37703 .36604 .35538 .34503 4% .96154 .82193 .79031 .75992 .73069 .70259 .67556 .64958 .62460 .60057 .57748 .55526 .53391 .51337 .49363 .47464 .45639 .43883 .42196 .40573 .39012 .37512 .36069 .34682 .33348 .32065 .30832 .29646 .28506 .27409 .26355 .25342 .24367 5% .95238 .78353 .74622 .71068 .67684 .64461 .61391 .58468 .55684 .53032 .50507 .48102 .45811 .43630 .41552 .39573 .37689 .35894 .34185 .32557 .31007 .29530 .28124 .26785 .25509 .24295 .23138 .22036 .20987 .19987 .19035 .18129 .17266 6% .94340 .74726 .70496 .66506 .62741 .59190 .55839 .52679 .49697 .46884 .44230 .41727 .39365 .37136 .35034 .33051 .31180 .29416 .27751 .26180 .24698 .23300 .21981 .20737 .19563 .18456 .17411 .16425 .15496 .14619 .13791 .13011 .12274 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 1 37 38 39 40 8% .92593 .85734 .79383 .73503 .68058 .63017 .58349 .54027 .50025 .46319 .42888 .39711 .36770 .34046 .31524 .29189 .27027 .25025 .23171 .21455 .19866 .18394 .17032 .15770 .14602 .13520 .12519 2% .98039 .48061 .47119 .46195 .45289 9% .91743 .84168 .77218 .70843 .64993 .59627 .54703 .50187 .46043 .42241 .38753 .35554 .32618 .29925 .27454 .25187 .23107 .21199 .19449 .17843 .16370 .15018 .13778 .12641 .11597 .10639 .09761 2% .97561 .40107 .39128 .38174 .37243 10% .90909 .82645 .75132 .68301 .62092 .56447 .51316 .46651 .42410 .38554 .35049 .31863 .28966 .26333 .23939 .21763 .19785 .17986 .16351 .14864 .13513 .12285 .11168 .10153 .09230 .08391 .07628 3% .97087 .33498 .32523 .31575 .30656 11% .90090 .81162 .73119 .65873 .59345 .53464 .48166 .43393 .39092 .35218 .31728 .28584 .25751 .23199 .20900 .18829 .16963 .15282 .13768 .12403 .11174 .10067 .09069 .08170 .07361 .06631 .05974 4% .96154 .23430 .22529 .21662 .20829 12% .89286 .79719 .71178 .63552 .56743 .50663 .45235 .40388 .36061 .32197 .28748 .25668 .22917 .20462 .18270 .16312 .14564 .13004 .11611 .10367 .09256 .08264 .07379 .06588 .05882 .05252 .04689 5% .95238 .16444 .15661 .14915 .14205 15% .86957 .75614 .65752 .57175 .49718 .43233 .37594 .32690 .28426 .24719 .21494 .18691 .16253 .14133 .12289 .10687 .09293 .08081 .07027 .06110 .05313 .04620 .04017 .03493 .03038 .02642 .02297 6% .94340 .11579 .10924 .10306 .09722 (n) Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 1 .11591 .10733 .09938 .09202 .08520 .07889 .07305 .06763 .06262 .05799 .05369 .04971 .04603 2% .98039 .08955 .08216 .07537 .06915 .06344 .05820 .05340 .04899 .04494 .04123 .03783 .03470 .03184 2% .97561 .06934 .06304 .05731 .05210 .04736 .04306 .03914 .03558 .03235 .02941 .02674 .02430 .02210 3% .97087 .05382 .04849 .04368 .03935 .03545 .03194 .02878 .02592 .02335 .02104 .01896 .01708 .01538 4% .96154 .04187 .03738 .03338 .02980 .02661 .02376 .02121 .01894 .01691 .01510 .01348 .01204 .01075 5% .95238 .01997 .01737 .01510 .01313 .01142 .00993 .00864 .00751 .00653 .00568 .00494 .00429 .00373 6% .94340 28 29 30 31 32 33 34 35 36 37 38 39 40 3.FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 TABLE. Contains the amounts to which periodic rents of 1 will accumulate if the payments (rents) are invested at the end of each period at a specified rate of interest for a specified number of periods (Table 6.3). Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 1 2 3 4 5 6 7 8 9 2% 2% 3% 4% 5% 6% 1.00000 2.02000 3.06040 4.12161 5.20404 6.30812 7.43428 8.58297 9.75463 1.00000 2.02500 3.07563 4.15252 5.25633 6.38774 7.54743 8.73612 9.95452 1.00000 2.03000 3.09090 4.18363 5.30914 6.46841 7.66246 8.89234 10.15911 1.00000 2.04000 3.12160 4.24646 5.41632 6.63298 7.89829 9.21423 10.58280 1.00000 2.05000 3.15250 4.31013 5.52563 6.80191 8.14201 9.54911 11.02656 1.00000 2.06000 3.18360 4.37462 5.63709 6.97532 8.39384 9.89747 11.49132 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 2% 2% 3% 4% 5% 6% 1.00000 10.94972 12.16872 13.41209 14.68033 15.97394 17.29342 18.63929 20.01207 21.41231 22.84056 24.29737 25.78332 27.29898 28.84496 30.42186 32.03030 33.67091 35.34432 37.05121 38.79223 40.56808 42.37944 44.22703 46.11157 48.03380 49.99448 51.99437 54.03425 56.11494 58.23724 60.40198 1.00000 11.20338 12.48347 13.79555 15.14044 16.51895 17.93193 19.38022 20.86473 22.38635 23.94601 25.54466 27.18327 28.86286 30.58443 32.34904 34.15776 36.01171 37.91200 39.85980 41.85630 43.90270 46.00027 48.15028 50.35403 52.61289 54.92821 57.30141 59.73395 62.22730 64.78298 67.40255 1.00000 11.46338 12.80780 14.19203 15.61779 17.08632 18.59891 20.15688 21.76159 23.41444 25.11687 26.87037 28.67649 30.53678 32.45288 34.42647 36.45926 38.55304 40.70963 42.93092 45.21885 47.57542 50.00268 52.50276 55.07784 57.73018 60.46208 63.27594 66.17422 69.15945 72.23423 75.40126 1.00000 12.00611 13.48635 15.02581 16.62684 18.29191 20.02359 21.82453 23.69751 25.64541 27.67123 29.77808 31.96920 34.24797 36.61789 39.08260 41.64591 44.31174 47.08421 49.96758 52.96629 56.08494 59.32834 62.70147 66.20953 69.85791 73.65222 77.59831 81.70225 85.97034 90.40915 95.02552 1.00000 12.57789 14.20679 15.91713 17.71298 19.59863 21.57856 23.65749 25.84037 28.13238 30.53900 33.06595 35.71925 38.50521 41.43048 44.50200 47.72710 51.11345 54.66913 58.40258 62.32271 66.43885 70.76079 75.29883 80.06377 85.06696 90.32031 95.83632 101.62814 107.70955 114.09502 120.79977 1.00000 13.18079 14.97164 16.86994 18.88214 21.01507 23.27597 25.67253 28.21288 30.90565 33.75999 36.78559 39.99273 43.39229 46.99583 50.81558 54.86451 59.15638 63.70577 68.52811 73.63980 79.05819 84.80168 90.88978 97.34316 104.18376 111.43478 119.12087 127.26812 135.90421 145.05846 154.76197 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 1 8% 1.00000 2.08000 3.24640 4.50611 5.86660 7.33592 8.92280 10.63663 12.48756 14.48656 16.64549 18.97713 21.49530 24.21492 27.15211 30.32428 33.75023 37.45024 41.44626 45.76196 50.42292 55.45676 60.89330 2% 2% 1.00000 9% 1.00000 2.09000 3.27810 4.57313 5.98471 7.52334 9.20044 11.02847 13.02104 15.19293 17.56029 20.14072 22.95339 26.01919 29.36092 33.00340 36.97371 41.30134 46.01846 51.16012 56.76453 62.87334 69.53194 1.00000 10% 1.00000 2.10000 3.31000 4.64100 6.10510 7.71561 9.48717 11.43589 13.57948 15.93743 18.53117 21.38428 24.52271 27.97498 31.77248 35.94973 40.54470 45.59917 51.15909 57.27500 64.00250 71.40275 79.54302 66.76476 76.78981 73.10594 84.70090 79.95442 93.32398 87.35077 102.7231 4 3% 4% 5% 1.00000 1.00000 1.00000 11% 12% 15% 1.00000 1.00000 1.00000 2.11000 2.12000 2.15000 3.34210 3.37440 3.47250 4.70973 4.77933 4.99338 6.22780 6.35285 6.74238 7.91286 8.11519 8.75374 9.78327 10.08901 11.06680 11.85943 12.29969 13.72682 14.16397 14.77566 16.78584 16.72201 17.54874 20.30372 19.56143 20.65458 24.34928 22.71319 24.13313 29.00167 26.21164 28.02911 34.35192 30.09492 32.39260 40.50471 34.40536 37.27972 47.58041 39.18995 42.75328 55.71747 44.50084 48.88367 65.07509 50.39593 55.74972 75.83636 56.93949 63.43968 88.21181 64.20283 72.05244 102.44358 72.26514 81.69874 118.81012 81.21431 92.50258 137.63164 91.14788 104.60289 159.27638 102.1741 88.49733 118.15524 184.16784 5 98.34706 114.41331 133.33387 212.79302 127.9987 109.18177 150.33393 245.71197 7 143.0786 121.09994 169.37401 283.56877 4 6% 1.00000 (n) Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 1 2% 2% 1.00000 1.00000 3% 1.00000 159.8172 95.33883 112.96822 134.20994 9 124.1353 178.3971 103.96594 148.63093 6 9 136.3075 199.0208 113.28321 164.49402 4 8 149.5752 221.9131 123.34587 181.94343 2 7 164.0369 247.3236 134.21354 201.13777 9 2 179.8003 275.5292 145.95062 222.25154 2 2 196.9823 306.8374 158.62667 245.47670 4 4 215.7107 341.5895 172.31680 271.02437 6 5 236.1247 380.1644 187.10215 299.12681 2 1 258.3759 422.9824 203.07032 330.03949 5 9 282.6297 470.5105 220.31595 364.04343 8 6 309.0664 523.2667 238.94122 401.44778 6 3 337.8824 581.8260 259.05652 442.59256 5 7 4% 5% 6% 1.00000 1.00000 1.00000 190.69889 327.10408 28 214.58275 377.16969 29 241.33268 434.74515 30 271.29261 500.95692 31 304.84772 577.10046 32 342.42945 644.66553 33 384.52098 765.36535 34 431.66350 881.17016 35 484.46312 1014.3456 36 8 543.59869 1167.49753 37 1343.6221 38 6 1546.1654 684.01020 39 9 1779.0903 767.09142 40 1 609.83053 4.PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 TABLE. Contains the amounts that must be deposited now at a specified rate of interest to permit withdrawals of 1 at the end of regular periodic intervals for the specified number of periods (Table 6.4). Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 2% 2% .98039 1.94156 2.88388 3.80773 4.71346 5.60143 6.47199 7.32548 8.16224 8.98259 9.78685 .97561 1.92742 2.85602 3.76197 4.64583 5.50813 6.34939 7.17014 7.97087 8.75206 9.51421 10.2577 10.57534 6 10.9831 11.34837 9 3% 4% 5% 6% .97087 1.91347 2.82861 3.71710 4.57971 5.41719 6.23028 7.01969 7.78611 8.53020 9.25262 .96154 1.88609 2.77509 3.62990 4.45182 5.24214 6.00205 6.73274 7.43533 8.11090 8.76048 .95238 1.85941 2.72325 3.54595 4.32948 5.07569 5.78637 6.46321 7.10782 7.72173 8.30641 .94340 1.83339 2.67301 3.46511 4.21236 4.91732 5.58238 6.20979 6.80169 7.36009 7.88687 9.95400 9.38507 8.86325 8.38384 10.63496 9.98565 9.39357 8.85268 14 12.10625 11.69091 11.29607 15 12.84926 16 17 18 19 20 21 22 12.3813 8 13.0550 13.57771 0 13.7122 14.29187 0 14.3533 14.99203 6 14.9788 15.67846 9 15.5891 16.35143 6 16.1845 17.01121 5 16.7654 17.65805 1 10.5631 9.89864 9.29498 2 11.93794 11.11839 10.37966 9.71225 12.56110 11.65230 10.83777 10.10590 12.1656 7 12.6593 13.75351 0 13.1339 14.32380 4 13.5903 14.87747 3 14.0291 15.41502 6 13.16612 11.27407 10.47726 11.68959 10.82760 12.08532 11.15812 12.46221 11.46992 12.82115 11.76408 15.93692 14.45112 13.16300 12.04158 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 1 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 2% 2% 3% .98039 .97561 .97087 4% 5% 6% .96154 .95238 .94340 14.8568 18.29220 17.33211 16.44361 13.48857 12.30338 4 17.8849 15.2469 18.91393 16.93554 13.79864 12.55036 9 6 18.4243 15.6220 19.52346 17.41315 14.09394 12.78336 8 8 18.9506 15.9827 20.12104 17.87684 14.37519 13.00317 1 7 19.4640 16.3295 20.70690 18.32703 14.64303 13.21053 1 9 19.9648 16.6630 21.28127 18.76411 14.89813 13.40616 9 6 20.4535 16.9837 21.84438 19.18845 15.14107 13.59072 5 1 20.9302 17.2920 22.39646 19.60044 15.37245 13.76483 9 3 21.3954 17.5884 22.93770 20.00043 15.59281 13.92909 1 9 21.8491 17.8735 23.46833 20.38877 15.80268 14.08404 8 5 22.2918 18.1476 23.98856 20.76579 16.00255 14.23023 8 5 22.7237 24.49859 21.13184 18.41120 16.19290 14.36814 9 23.1451 18.6646 24.99862 21.48722 16.37419 14.49825 6 1 23.5562 18.9082 25.48884 21.83225 16.54685 14.62099 5 8 23.9573 19.1425 25.96945 22.16724 16.71129 14.73678 2 8 24.3486 19.3678 26.44064 22.49246 16.86789 14.84602 0 6 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 1 39 40 8% .92593 1.78326 2.57710 3.31213 3.99271 4.62288 5.20637 5.74664 6.24689 6.71008 7.13896 7.53608 7.90378 8.24424 8.55948 8.85137 9.12164 9.37189 9.60360 9.81815 10.01680 10.20074 10.37106 10.52876 10.67478 10.80998 2% .98039 2% .97561 24.7303 26.90259 4 25.1027 27.35548 8 9% 10% .91743 .90909 1.75911 1.73554 2.53130 2.48685 3.23972 3.16986 3.88965 3.79079 4.48592 4.35526 5.03295 4.86842 5.53482 5.33493 5.99525 5.75902 6.41766 6.14457 6.80519 6.49506 7.16073 6.81369 7.48690 7.10336 7.78615 7.36669 8.06069 7.60608 8.31256 7.82371 8.54363 8.02155 8.75563 8.20141 8.95012 8.36492 9.12855 8.51356 9.29224 8.64869 9.44243 8.77154 9.58021 8.88322 9.70661 8.98474 9.82258 9.07704 9.92897 9.16095 3% .97087 4% .96154 19.5844 22.80822 8 19.7927 23.11477 7 11% 12% .90090 .89286 1.71252 1.69005 2.44371 2.40183 3.10245 3.03735 3.69590 3.60478 4.23054 4.11141 4.71220 4.56376 5.14612 4.96764 5.53705 5.32825 5.88923 5.65022 6.20652 5.93770 6.49236 6.19437 6.74987 6.42355 6.98187 6.62817 7.19087 6.81086 7.37916 6.97399 7.54879 7.11963 7.70162 7.24967 7.83929 7.36578 7.96333 7.46944 8.07507 7.56200 8.17574 7.64465 8.26643 7.71843 8.34814 7.78432 8.42174 7.84314 8.48806 7.89566 5% 6% .95238 .94340 17.01704 14.94907 17.15909 15.04630 15% .86957 1.62571 2.28323 2.85498 3.35216 3.78448 4.16042 4.48732 4.77158 5.01877 5.23371 5.42062 5.58315 5.72448 5.84737 5.95424 6.04716 6.12797 6.19823 6.25933 6.31246 6.35866 6.39884 6.43377 6.46415 6.49056 (n) Periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 1 10.93516 11.05108 11.15841 11.25778 11.34980 11.43500 11.51389 11.58693 11.65457 11.71719 11.77518 11.82887 11.87858 11.92461 2% 2% .98039 .97561 10.02658 9.23722 10.11613 9.30657 10.19828 9.36961 10.27365 9.42691 10.34280 9.47901 10.40624 9.52638 10.46444 9.56943 10.51784 9.60858 10.56682 9.64416 10.61176 9.67651 10.65299 9.70592 10.69082 9.73265 10.72552 9.75697 10.75736 9.77905 3% 4% 5% 6% .97087 8.54780 8.60162 8.65011 8.69379 8.73315 8.76860 8.80054 8.82932 8.85524 8.87859 8.89963 8.91859 8.93567 8.95105 .96154 7.94255 7.98442 8.02181 8.05518 8.08499 8.11159 8.13535 8.15656 8.17550 8.19241 8.20751 8.22099 8.23303 8.24378 .95238 6.51353 6.53351 6.55088 6.56598 6.57911 6.59053 6.60046 6.60910 6.61661 6.62314 6.62882 6.63375 6.63805 6.64178 .94340 27 28 29 30 31 32 33 34 35 36 37 38 39 40 5.PRESENT VALUE OF AN ANNUITY DUE OF 1 TABLE. Contains the amounts that must be deposited now at a specified rate of interest to permit withdrawals of 1 at the beginning of regular periodic intervals for the specified number of periods (Table 6.5). Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 1 2 3 4 5 6 7 8 2% 2% 3% 4% 5% 6% 1.00000 1.98039 2.94156 3.88388 4.80773 5.71346 6.60143 7.47199 1.00000 1.97561 2.92742 3.85602 4.76197 5.64583 6.50813 7.34939 1.00000 1.97087 2.91347 3.82861 4.71710 5.57971 6.41719 7.23028 1.00000 1.96154 2.88609 3.77509 4.62990 5.45182 6.24214 7.00205 1.00000 1.95238 2.85941 3.72325 4.54595 5.32948 6.07569 6.78637 1.00000 1.94340 2.83339 3.67301 4.46511 5.21236 5.91732 6.58238 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 1 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2% 1.00000 8.32548 9.16224 9.98259 2% 1.00000 8.17014 8.97087 9.75206 10.5142 10.78685 1 3% 4% 5% 6% 1.00000 8.01969 8.78611 9.53020 1.00000 7.73274 8.43533 9.11090 1.00000 7.46321 8.10782 8.72173 1.00000 7.20979 7.80169 8.36009 10.25262 9.76048 9.30641 8.88687 10.3850 9.86325 9.38384 7 10.9856 12.34837 11.98319 11.63496 10.39357 9.85268 5 12.6909 13.10625 12.29607 11.56312 10.89864 10.29498 1 13.3813 13.84926 12.93794 12.11839 11.37966 10.71225 8 14.0550 12.6523 14.57771 13.56110 11.83777 11.10590 0 0 14.7122 13.1656 15.29187 14.16612 12.27407 11.47726 0 7 15.3533 13.6593 15.99203 14.75351 12.68959 11.82760 6 0 15.9788 14.1339 16.67846 15.32380 13.08532 12.15812 9 4 16.5891 14.5903 17.35143 15.87747 13.46221 12.46992 6 3 17.1845 15.0291 18.01121 16.41502 13.82115 12.76408 5 6 17.7654 18.65805 16.93692 15.45112 14.16300 13.04158 1 15.8568 19.29220 18.33211 17.44361 14.48857 13.30338 4 18.8849 16.2469 19.91393 17.93554 14.79864 13.55036 9 6 20.52346 19.4243 18.41315 16.6220 15.09394 13.78336 11.57534 11.25776 10.95400 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 1 27 28 29 30 31 32 33 34 35 36 37 38 39 40 8% 1.00000 1.92593 2% 2% 1.00000 1.00000 8 19.9506 21.12104 1 20.4640 21.70690 1 20.9648 22.28127 9 21.4535 22.84438 5 21.9302 23.39646 9 22.3954 23.93770 1 22.8491 24.46833 8 23.2918 24.98856 8 23.7237 25.49859 9 24.1451 25.99862 6 24.5562 26.48884 5 24.9573 26.96945 2 25.3486 27.44064 0 25.7303 27.90259 4 9% 10% 1.00000 1.00000 1.91743 1.90909 3% 4% 1.00000 1.00000 8 16.9827 18.87684 7 17.3295 19.32703 9 17.6630 19.76411 6 17.9837 20.18845 1 18.2920 20.60044 3 18.5884 21.00043 9 18.8735 21.38877 5 19.1476 21.76579 5 5% 6% 1.00000 1.00000 15.37519 14.00317 15.64303 14.21053 15.89813 14.40616 16.14107 14.59072 16.37245 14.76483 16.59281 14.92909 16.80268 15.08404 17.00255 15.23023 22.13184 19.41120 17.19290 15.36814 19.6646 1 19.9082 22.83225 8 20.1425 23.16724 8 20.3678 23.49246 6 20.5844 23.80822 8 11% 12% 1.00000 1.00000 1.90090 1.89286 22.48722 17.37419 15.49825 17.54685 15.62099 17.71129 15.73678 17.86789 15.84602 18.01704 15.94907 15% (n) Periods 1.00000 1 1.86957 2 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 1 2.78326 3.57710 4.31213 4.99271 5.62288 6.20637 6.74664 7.24689 7.71008 8.13896 8.53608 8.90378 9.24424 9.55948 9.85137 10.12164 10.37189 10.60360 10.81815 11.01680 11.20074 11.37106. 11.52876 11.67478 11.80998 11.93518 12.05108 2% 2% 1.00000 1.00000 2.75911 2.73554 3.53130 3.48685 4.23972 4.16986 4.88965 4.79079 5.48592 5.35526 6.03295 5.86842 6.53482 6.33493 6.99525 6.75902 7.41766 7.14457 7.80519 7.49506 8.16073 7.81369 8.48690 8.10336 8.78615 8.36669 9.06069 8.60608 9.31256 8.82371 9.54363 9.02155 9.75563 9.20141 9.95012 9.36492 10.12855 9.51356 10.29224 9.64869 10.44243 9.77154 10.58021 9.88322 10.70661 9.98474 10.0770 10.82258 4 10.1609 10.92897 5 10.2372 11.02658 2 10.3065 11.11613 7 3% 4% 5% 6% 1.00000 2.71252 3.44371 4.10245 4.69590 5.23054 5.71220 6.14612 6.53705 6.88923 7.20652 7.49236 7.74987 7.98187 8.19087 8.37916 8.54879 8.70162 8.83929 8.96333 9.07507 9.17574 9.26643 9.34814 1.00000 2.69005 3.40183 4.03735 4.60478 5.11141 5.56376 5.96764 6.32825 6.65022 6.93770 7.19437 7.42355 7.62817 7.81086 7.97399 8.11963 8.24967 8.36578 8.46944 8.56200 8.64465 8.71843 8.78432 1.00000 2.62571 3.28323 3.85498 4.35216 4.78448 5.16042 5.48732 5.77158 6.01877 6.23371 6.42062 6.58315 6.72448 6.84737 6.95424 7.04716 7.12797 7.19823 7.25933 7.31246 7.35866 7.39884 7.43377 1.00000 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 9.42174 8.84314 7.46415 26 9.48806 8.89566 7.49056 27 9.54780 8.94255 7.51353 28 9.60162 8.98442 7.53351 29 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 1 12.15841 12.25778 12.34980 12.43500 12.51389 12.58693 12.65457 12.71719 12.77518 12.82887 12.87858 2% 2% 1.00000 1.00000 10.3696 11.19828 1 10.4269 11.27365 1 10.4790 11.34280 1 10.5263 11.40624 8 10.5694 11.46444 3 10.6085 11.51784 8 10.6441 11.56682 6 10.6765 11.61176 1 10.7059 11.65299 2 10.7326 11.69082 5 10.7569 11.72552 7 3% 4% 5% 6% 1.00000 1.00000 1.00000 1.00000 9.65011 9.02181 7.55088 30 9.69379 9.05518 7.56598 31 9.73315 9.08499 7.57911 32 9.76860 9.11159 7.59053 33 9.80054 9.13535 7.60046 34 9.82932 9.15656 7.60910 35 9.85524 9.17550 7.61661 36 9.87859 9.19241 7.62314 37 9.89963 9.20751 7.62882 38 9.91859 9.22099 7.63375 39 9.93567 9.23303 7.63805 40

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Accounting and Finance An Introduction

Authors: Peter Atrill, Eddie McLaney

8th edition

129208829X, 1292088297, 978-1292088297

More Books

Students also viewed these Accounting questions

Question

how to find optimal solution

Answered: 1 week ago