Answered step by step
Verified Expert Solution
Question
1 Approved Answer
B2B Company is considering the purchase of equipment that would allow the company to add a new product to its line. The equipment costs $371,200
B2B Company is considering the purchase of equipment that would allow the company to add a new product to its line. The equipment costs $371,200 and has a 8-year life and no salvage value. B2B Company requires at least an 10% return on this investment. The expected annual income for each year from this equipment follows: (PV of $1, FV of $1. PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.) $ 232,099 Sales of new product Expenses Materials, labor, and overhead (except depreciation) Depreciation-Equipment Selling, general, and administrative expenses Income 81,000 46,400 23,290 $ 81,409 (a) Compute the net present value of this investment. (b) Should the investment be accepted or rejected on the basis of net present value? Complete this question by entering your answers in the tabs below. Required A Required B Compute the net present value of this investment. (Round your present value factor to 4 decimals and other final answers to the nearest whole dollar) Required A Required B Compute the net present value of this investment. (Round your present value factor to 4 decimals and other final answers to the nearest whole dollar.) Chart Values are Based on: n = % Select Chart Amount PV Factor Present Value $ 0 Net present value K Recline A Required B >> Settings and mor Table B.1* Present Value of 1 p=1/(1+1)" Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 0.9804 0.9709 0.9615 0.9524 0.9434 0.9901 0.9803 0.9346 0.9259 0.9174 0.9091 0.8929 0.8696 1 2 0.9612 0.9426 0.9246 0.9070 0.8734 0.8573 0.8417 0.8264 0.7972 0.7561 2 3 0.9706 0.9423 0.8900 0.8396 0.9151 0.8890 0.8163 0.7938 0.7722 0.7513 0.7118 0.6575 3 4 0.9610 0.9238 0.8885 0.8638 0.8227 0.7835 0.7921 0.7629 0.7350 0.7084 0.6830 0.6355 4 5 0.9515 0.9057 0.8548 0.8219 0.7903 0.8626 0.5718 0.4972 0.7473 0.7130 0.6806 0.6499 0.6209 5 6 0.9420 0.8880 0.8375. 0.7462 0.5674 0.5066 0.7050 0.6663 0.6302 0.5963 0.5645 0.4323 6 7 0.9327 0.8706 0.8131 0.7599 0.7107 0.6227 0.5835 0.5470 0.5132 0.4523 0.3759 7 0.6651 10.6274 8 0.9235 0.8535 0.7894 0.7307 0.6768 0.5820 0.5403 0.5019 0.4665 0.4039 0.3269 8 9 0.9143 0.8368 0.7664 0.7026 0.6446 0.5919 0.5439 0.5002 0.4604 0.4241 0.3606 0.2843 9 10 0.9053 0.8203 0.7441 0.6756 0.6139 0.5584 0.5083 0.4632 0.4224 0.3855 0.2472 10 11 0.8963 0.8043 0.7224 0.3220 0.2875 0.6496 0.5847 0.5268 0.4289 0.3875 0.3505 0.2149 11 0.4751 0.4440 12 0.8874 0.7885 0.7014 0.6246 0.5568 0 4970 0.3971 0.3555 0.3186 0.2567 0.1869 12 13 0.8787 0.7730 0.6810 0.6006 0.5303 0.4688 0.4150 0.3677 0.3262 0.2897 0.2292 0.1625 13 14 0.8700 0.7579 0.6611 0.5775 0.5051 0.4423 0.3878 0.3405 0.2992 0.2633 0.2046 0.1413 14 15 0.8613 0.7430 0.6419 0.5553 0.4810 0.4173 0.3624 0.3152 0.2394 0.1827 0.1229 15 16 0.8528 0.7284 0.6232 0.5339 0.4581 0.3936 0.3387 0.2176 0.1631 0.1069 16 0.2745 0.2519 0.2311 0.2120 17 0.8444 0.7142 0.6050 0.5134 0.4363 0.3714 0.3166 0.1978 0.1456 0.0929 0.2919 0.2703 0.2502 10.2317 17 18 0.8360 0.7002 0.5874 0.4936 0.4155 0.3503 0.2959 0.1799 0.1300 0.0808 18 19 0.8277 0.6864 0.5703 0.4746 0.2765 0.1945 0.1635 0.1161 0.0703 19 0.3957 0.3769 0.3305 0.3118 20 0.8195 0.6730 0.5537 0.4564 0.2584 0.2145 0.1784 0.1486 0.1037 0.0611 20 5 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473 0.7130 0.6806 0.6499 0.6209 0.5674 0.4972 5 6 0.9420 0.8880 0.8375 0.7903 0.7462 0.7050 0.5963 0.5645 0.5066 0.4323 6 0.6663 0.6227 0.6302 0.5835 7 0.9327 0.8706 0.8131 0.7599 0.7107 0.5132 0.4523 0.3759 7 0.6651 0.6274 0.5470 0.5019 8 0.9235 0.8535 0.7894 0.7307 0.6768 0.5820 0.4665 0.4039 0.3269 8 0.5403 0.5002 9 0.9143 0.8368 0.7664 0.7026 0.6446 0.5919 0.5439 0.4604 0.4241 0.3606 0.2843 9 10 0.9053 0.8203 0.7441 0.6756 0.6139 0.5584 0.5083 0.4632 0.3855 0.3220 0.2472 10 11 0.8963 0.8043 0.7224 0.6496 0.5268 0.4751 0.3505 0.2875 0.2149 11 12 0.8874 0.7885 0.7014 0.4970 0.2567 0.1869 12 0.4440 0.4150 0.3186 0.2897 13 0.8787 0.7730 0.6810 0.2292 0.1625 0.4224 0.3875 0.3555 0.3262 0.2992 0.2745 0.2519 13 14 0.8700 0.6246 0.6006 0.5775 0.5553 0.5339 0.3878 0.2633 0.2046 0.1413 0.7579 0.7430 14 0.6611 0.6419 0.5847 0.5568 0.5303 0.5051 0.4810 0.4581 0.4363 0.4155 15 0.8613 0.4289 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2502 0.2317 0.1229 15 0.3624 0.3387 16 0.4688 0.4423 0.4173 0.3936 0.3.714 0.3503 0.3305 0.8528 0.7284 0.6232 0.1069 16 0.1827 0.1631 0.1456 0.1300 17 0.8444 0.7142 0.6050 0.5134 0.2394 0.2176 0.1978 0.1799 0.1635 0.0929 17 18 0.8360 0.7002 014936 0.0808 18 0.5874 0.5703 0.2311 0.2120 0.1945 0.1784 19 0.8277 0.4746 0.3166 0.2959 0.2765 0.2584 0.1842 0.3957 0.1161 0.0703 0.6864 0.6730 19 20 0.8195 0.3769 0.3118 0.2145 0.1486 0.0611 20 0.1037 0.0588 25 0.7798 0.5537 0.4776 0.4120 0.6095 012953 0.1460 0.1160 0.0304 25 30 0.7419 0.5521 0.4564 0.3751 0.3083 0.2534 0.2083 0.2314 0.2330 0.1741 0.1301 0.1314 0.0994 0.0754 0.0334 30 0.0151 0.0923 0.0573 0.0356 0.0221 35 0.7059 0.3554 0.5000 0.0676 0.0075 35 0.0490 0.1813 0.1420 0.0937 0.0668 0.0189 0.0107 0.4529 40 0.6717 0.3066 0.0972 0.0460 0.0037 0.0318 40 *Used to compute the present value of a known future amount. For example: How much would you need to invest today at 10% compounded semiannually to accumulate $5,000 in 6 today? Using the factors of n = 12 and i = 5% (12 semiannual periods and a semiannual rate of 5%), the factor is 0.5568. You would need to invest $2.784 today ($5,000 x 0.5568). Table B.2 Future Value of 1 f=(1 + 2)" Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 1 1.0100 1.0200 1.0300 1.0400 1.0500 1.0700 1.1200 1.1500 1 2 1.0201 1.0900 1.1881 1.0404 1.0609 1.1025 1.1449 1.2544 1.3225 2 3 1.1000 1.2100 1.3310 1.4641 1.0303 1.0612 1.2250 1.4049 1.5209 3 1.0927 1.1255 1.2950 1.4116 4 1.0406 1.0600 1.1236 1 1910 1.2625 1.3382 1.4185 1.5036 1.0824 1.7490 1.0816 1.1249 1.1699 1.2167 1.2653 1.3159 4 5 1.5735 1.7623 1.0510 1.1041 1.1593 1.5386 16105 20114 5 6 1.0615 1.1262 1.1941 1.6771 1.7716 1.9738 2.3131 6 1.3108 1.4026 1.5007 1.6058 1.7182 1.8385 1.0000 1.0800 1.1664 1.2597 1.3605 1.4693 1.5869 1.7138 1.8509 1.9990 2.1589 2.3316 2.5182 2.7196 7 1.0721 1.1487 1.2299 1.8280 1.9487 2.6600 7 2.2107 2.4760 8 1.0829 1.1717 1.2668 1.3686 1.5938 1.9926 2.1436 1.1576 1.2155 1.2763 1.3401 1.4071 1.4775 1.5513 1.6289 1.7103 1.7959 1.8856 1.9799 3.0590 8 9 1.0937 1.1951 1.3048 1.4233 1.6895 2.7731 9 2.3579 2.5937 3.5179 4.0456 10 1.3439 1.9672 2.1719 2.3674 2.5804 3.1058 1.1046 1.1157 10 11 1.7908 1.8983 2.0122 2.8531 3.4785 4.6524 11 12 2.8127 1.4802 1.5395 1.6010 1 6651 1.7317 3.1384 3.8960 5.3503 1.1268 1.1381 12 1.2190 1.2434 1.2682 1.2936 1.3195 1.3459 1.3728 13 2.1329 3.0658 3.4523 43635 6.1528 1.3842 1.4258 1.4685 1.5126 1.5580 1.6047 13 14 1.1495 2.2609 2.9372 3.3417 3.7975 4.8871 7.0757 14 15 1.1610 1.8009 12.0789 2.3966 2.1049 2.2522 2.4098 2.5785 2.7590 2.9522 3.1588 3.3799 3.6165 3.1722 3.6425 4.1772 5.4736 8.1371 15 16 1.1726 1.8730 2.1829 2.5404 3.9703 4.5950 6.1304 9.3576 16 3,4259 3.7000 17 1.1843 1.4002 1.9479 2.2920 2.6928 4.3276 5.0545 6.8660 10.7613 17 1.6528 1.7024 18 2.4066 2.8543 3.9960 4.7171 S.5599 7.6900 18 12.3755 1.1961 1.2081 1.4282 1.4568 2.0258 2.1068 19 1.7535 2.5270 3.0256 4.3157 5.1417 6.1159 19 8.6128 14.2318 1 inca 1 1011 26522 2071 VA L610 SA LOGIER 1ONASS 4 1.0406 1.0824 11255 1.1699 1 2133 1.2625 13108 1.3605 1.4116 1.4641 15733 1.490 5 1.0510 1.1041 1.1593 1.2167 1.3382 1.2763 1.4026 1.4693 1 5386 1.6105 1.7623 5 2.0114 6 1.0615 1.1262 1.1941 1.2653 1.4185 13401 1.5007 6 1.5869 1.6771 1.7716 1.9738 2.3131 7 1.0721 1.2299 1.1487 1.3159 1.4071 7 1.6058 1.5036 1.7138 1.8280 1.9487 2.2107 2.6600 8 1.0829 1.1717 1.2668 1.3686 1.5938 1.4775 8 1.7182 1.8509 1.9926 2.4760 3.0590 2.1436 2.3579 1.0937 9 1.1951 1.3048 1.4233 9 1.5513 1.8385 1.6895 19990 2.1719 3.5179 2.7731 10 1.1046 1.2190 1.3439 1.4802 1.7908 10 1.9672 2.1589 2.3674 2.5937 3.1058 1.6289 1.7103 4.0456 4.6524 11 1.2434 1.1157 1.3842 1.5395 11 1.8983 2.3316 3.4785 2.5804 2.8531 2.1049 2.2522 5.3503 12. 12 1.2682 1.1268 1.4258 1.6010 3.8960 1.7959 2.8127 2.0122 2.5182 2.7196 13 1.1381 13 1.4685 1.2936 1.6651 1.8856 2.1329 2.4098 4.3635 3.0658 3.1384 3.4523 3.7975 1.1495 14 1.3195 1.5126 14 1.7317 1.9799 2.9372 3.3417 4.8871 6.1528 7.0757 8.1371 2.2609 2.3966 15 1.1610 1 3459 2.5785 2.7590 2.9522 2.0789 1.8009 1.5580 5.4736 15 3.1722 3.6425 4.1772 16 1.8730 1.6047 16 2.1829 4.5950 2.5404 9.3576 3.9703 1.1726 1.1843 3.4259 3.7000 6.1304 6.8660 1.6528 17 1.9479 17 2.6928 2.2920 5.0545 3.1588 113728 1.4002 1.4282 1.4568 4.3276 4.7171 10.7613 12.3755 18 1.1961 18 1.7024 2.0258 2.4066 3.3799 2.8543 3.9960 5.5599 6.1159 19 2.5270 1.7535 7.6900 8.6128 9.6463 4.3157 19 3.0256 2.1068 5.1417 14.2318 3.6165 1.2081 1.2202 1.2824 1.8061 3.8697 5.6044 3.2071 20 16.3665 2.6533 2.1911 1/4859 20 6.7275 4.6610 17.0001 1/6406 5.4274 4.2919 3.3864 2.0938 25 32.9190 215 6.8485 2.6658 30 10.0627 29.9599 7.6123 -4.3219 2.4273 66.2118 1.3478 30 10.8347 17.4494 28.1024 5.7435 3.2434 1,8114 8.6231 13.2677 20.4140 31.4094 35 35 10.6766 3.9461 52.7996 119999 5.5160 2.8139 133.1755 1.4166 14.7853 7.6861 21.7245 14.9745 10.2857 93.0510 7.0400 312620 40 267.8635 45.2593 4.8010 212080 1.4889 40 Used to compute the future value of a known present amount. For example: What is the accumulated value of $3,000 invested today at 8% compounded quarterly for 5 years? of n = 20 and i = 2% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. The accumulated value is $4,457.70 ($3,000 * 1.4859). Table B.3+Present Value of an Annuity of 1 p= [1 -1/(1 + 2)"]/i Rate Periods 1% 2% 3% 4% 5% 6% 8% 9% 15% Periods 1 0.9901 0.9804 0.9709 0.9615 7% 0.9346 12% 0.8929 0.9524 0.9434 0.9259 0.8696 1 2 1.9704 1.9416 1.9135 10% 0.9091 1.7355 2.4869 1.8861 1.8334 1.8080 1.6257 2 1.8594 2.7232 3 2.9410 2.8286 2.7751 2.8839 3.8077 1.6901 2.4018 0.9174 1.7591 2.5313 32397 3.8897 2.2832 3 2.6730 3.4651 2.6243 3.3872 4 3.7171 3.6299 3.9020 4.8534 3.5460 3.1699 3.0373 2.8550 4 1.7833 2.5771 3.3121 3.9927 4.6229 15.2064 5 4.7135 4.5797 4.4518 4.3295 4.2124 3.7908 3.6048 3.3522 5 6 5.7955 5.6014 5.4172 5.2421 4.1002 4.7665 5.3893 4.4859 4.3553 4.1114 3.7845 6 7 6.7282 6.4720 6.2303 6.0021 50330 4.8684 4.5638 4.1604 7 8 7.6517 7.3255 7.0197 15.9713 5.7466 5.5348 5.3349 4.9676 4.4873 8 9 8.5660 8.1622 7.7861 5.0757 517864 6.4632 7.1078 7.7217 8.3064 8.8633 4.9173 5.5824 6.2098 6.8017 7.3601 7.8869 8.3838 6.5152 6.2469 5.9952 5.7590 5.3282 4.7716 9 10 94713 8.9826 6.7101 6.4177 5.6502 5.0188 10 8.5302 9.2526 6.7327 7.4353 8.1109 8.7605 9.3851 9.9856 10.5631 720236 7.4987 11 10.3676 9.7868 7 1390 5.2337 11 12 11.2551 10.5753 9.9540 7.9421 7.5361 5.9377 6.1944 6.4235 5.4206 6.8052 7.1607 7.4869 7.7862 12 13 12.1337 11.3484 10.6350 9.3936 8.8527 8.3577 7.9038 5.5831 13 6.1446 6.4951 6.8137 7.1034 7.3667 7.6061 7.8237 8.0216 14 13.0037 12.1062 11.2961 9/2950 8.7455 6.6282 5.7245 14 9.8986 10.3797 8.2442 8.5595 15 13.8651 12.8493 11.9379 11.1184 9.7122 9.1079 8.0607 6.8109 15 5.8474 5.9542 16 14.7179 13.5777 12.5611 11.6523 10.8378 10.1059 9.4466 8.8514 8.3126 6.9740 16 17 15.5623 14.2919 13.1661 12.1657 11.2741 10.4773 9.1216 8.5436 7.1196 17 9.7632 10.0591 6.0472 6.1280 18 16.3983 13.7535 12.6593 11.6896 10.8276 9.3719 8.7556 8.2014 7_2497 18 14.9920 15.6785 19 17.2260 14.3238 13.1339 12.0853 11.1581 10.3356 9.6036 S.9501 8.3679 7.3638 6.1982 19 20 18.0456 16.3514 14.8775 13.5903 12.4622 11.4699 10.5940 9.8181 9.1283 8.5136 7.4694 6.2593 20 4 3.9020 3.8077 3.7171 3.6299 3.5460 3.4651 3.3872 3.2397 3.1699 3.0373 2.8550 4 3.3121 3.9927 5 4.8534 4.7135 4.5797 4.4518 4.3295 4.2124 4.1002 3.8897 3.7908 3.6048 3.3522 5 6 5.7955 5.6014 5.4172 5.0757 4.9173 4.7665 4.6229 4.4859 4.3553 4.1114 3.7845 6 5.2421 6.0021 7 6.7282 6.4720 6.2303 5.7864 5.5824 5.3893 5.0330 4.8684 4.5638 4.1604 7 5.2064 5.7466 8 7.6517 7.3255 7.0197 6.7327 6.4632 6.2098 5.9713 5.5348 5,3349 4.9676 4.4873 8 9 8.5660 8.1622 7.7861 7.1078 6.8017 6.5152 6.2469 5.9952 5.3282 4.7716 9 10 9.4713 8.9826 8.5302 73601 6.7101 6.4177 5.6502 10 7.4353 8.1109 8.7605 9.3851 7.7217 8.3064 7.0236 7.4987 5.7590 6.1446 6.4951 6.8137 5.0188 5.2337 11 10.3676 9.7868 9.2526 6.8052 11 5.9377 6.1944 12 9.9540 8.8633 5.4206 12 11.2551 12.1337 7.8869 8.3838 8.8527 9.2950 7.1390 7.5361 7.9038 8.2442 13 9.9856 7.1034 7.1607 7:4869 7.7862 6.4235 5.5831 79427 8.3577 8.7455 9.1079 9.3936 9.8986 13 14 7.3667 6.6282 5.7245 14 13.0037 13.8651 15 8.5595 7.6061 6.8109 5.8474 15 16 10.5753 11 3484 12.1062 12.8493 13.5777 14.2919 14.9920 15.6785 16.3514 9.7122 10.1059 14.7179 10.6350 11.2961 11.9379 12.5611 13.1661 13.7535 14.3238 9.4466 8.0607 8.3126 8.5436 7.8237 6.9740 5.9542 8.8514 9.1216 16 17 15.5623 9.7632 8.0216 7.1196 17 6.0472 18 16.3983 10.0591 9.3719 8.7556 18 7.2497 6.1280 8.2014 8.3649 10.5631 11.1184 11.6523 12.1657 12.6593 13.1339 13.5903 15.6221 17.2920 18.6646 19.7928 19 10.3356 17.2260 9.6036 8.9501 7.3658 19 6.1982 10.3797 10.8378 11.2741 11.6896 12 0853 12.4622 14 0939 15.3725 16.3742 17.1591 20 10.5940 9.8181 9.1285 8.5136 18.0456 7.4694 20 6.2593 10.4773 10.8276 11.1581 11 4699 12.7834 13.7648 14.4982 15.0463 11.6536 25 9.8226 7.8431 22.0232 9.0770 6.4641 25 19.5235 22.3965 10.6748 11.2578 14.8775 17.4131 19.6004 21.4872 23.1148 12.4090 10.2737 9.4269 25.8077 30 6.5660 30 8.0552 8.1755 11.6546 10.5668 9.6442 35 6.6166 35 29.4086 24.9986 27.3555 12.9477 13.3317 11.9246 9.7791 10.7574 8.2438 6.6418 32.8347 40 40 Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2,000 per year for 10 vears assuming an annual interest rate of 9%? For (n = 10, i = 9%), the PV factor is 6/4217 82 000 per year for 10 years is the equivalent of S/2,835 today (S2,000 * 6.4177). Table B.4%Future Value of an Annuity of 1 f=[(1 + i)" - 1]/i Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 1 2 2.0100 2.0200 2.0300 2.0400 2.0500 2.0600 2.0700 2.0800 2.0900 2.1000 2.1200 2.1500 2 3 3.0301 3.0604 3.0909 3.1216 3.1836 3.2149 3.2464 3.2781 3.3100 3.475 3 3.1525 4.3101 4 4.0604 4.1216 4.1836 4.2465 4.3746 4.4399 4.6410 3.3744 4.7793 6.3528 4.9934 4 5 5.1010 5.3091 5.4163 5.5256 5.6371 5.7507 4.5061 5.8666 7.3359 5.2040 6.3081 6.1051 6.7424 5 6 6.1520 6.4684 6.6330 6.8019 6.9753 7.1533 7.7156 8.1152 8.7537 6 7 7.2135 7.4343 7.6625 7.8983 8.1420 8.3938 7 8 8.2857 8.8923 9.2142 9.5491 9.8975 8 8.5830 9.7546 9 9.3685 11.4913 9 10 10.4622 4.5731 5.9847 7.5233 9.2004 11 0285 13.0210 15.1929 17.5603 20.1407 22.9534 26.0192 29.3609 11.0668 13.7268 16.7858 20.3037 24.3493 29.0017 10.9497 10.0890 12.2997 14.7757 17.5487 20.6546 24.1331 28.0291 13.1808 14.9716 10 11 12.1687 11.5668 12.6825 11 9.4872 11.4359 135795 15.9374 18.5312 21.3843 24.5227 27.9750 31.7725 12 12 13 13.4121 14.6803 15.9739 34.3519 13.8093 14.9474 13 8.6540 10.2598 11.9780 13.8164 15.7836 17.8885 20.1406 22.5505 25.1290 27.8881 30.8402 33.9990 37 3790 40.9955 10.1591 11.4639 12.8078 14.1920 15.6178 17.0863 18.5989 20.1569 21.7616 23.4144 25.1169 26.8704 8.9228 10.6366 12.4876 14.4866 16.6455 18.9771 21.4953 24.2149 27.1521 30.3243 33.7502 37.4502 41.4463 45.7620 10.5828 11.0266 12.0061 12.5779 13.4864 14.2068 15.0258 15.9171 16.6268 17.7130 18.2919 19.5986 20.0236 21.5786 21.8245 23.6575 23 697525.8404 256454 | 28.1324 27:6712 30.5390 29.7781 33.0660 14 32.3926 14 40.5047 47.5804 15 16.0969 17.2934 37.2797 15 16 16.8699 18.8821 21 0151 23.2760 25.6725 28.2129 30.9057 33.7600 36.7856 17.2579 35.9497 55.7175 18.6393 20.0121 16 33.0034 36.9737 18.4304 17 17 18 40.5447 45.5992 42.7533 48.8837 55.7497 63.4397 65,0751 75.8364 19.6147 18 41.3013 46.0185 19 21 4123 22.8406 24.2974 20.8109 51.1591 S8.2118 19 20 22.0190 51.1601 572750 72.0524 102 4436 20 VOL 4.010 .4 4.9954 5 5.1010 5.2040 5.3091 5.4163 5.5256 6.7424 5 5.8666 7.3359 6.3528 8.1152 6 6.1520 6.3081 6.4684 6.6330 6.8019 8.7537 6 5.7507 7.1533 8.6540 10.2598 7 7.2135 7.4343 7.6625 7.8983 5.6371 6.9753 8.3938 9.8975 11.4913 8.1420 11.0668 7 8.9228 10.6366 5.9847 7.5233 9.2004 11.0285 13.0210 15. 1929 6.1051 7.7156 9.4872 11.4359 13.5795 15.9374 8 8.2857 8.5830 8.8923 9.5491 13.7268 8 9 9.3685 9.7546 10.1591 9.2142 10.5828 12.0061 11.0266 11.9780 10.0890 12.2997 14.7757 17.5487 20.6546 9 16.7858 20.3037 10 10.4622 10.9497 11.4639 13.1808 13.8164 10 11 11.5668 12.1687 12.8078 13.4864 24.3493 11 14.9716 16.8699 17.5603 20.1407 12 12.6825 12.5779 14.2068 15.9171 17.7130 19.5986 13.4121 14.1920 24.1331 29.0017 12 15.7836 17.8885 20.1406 22.5505 12.4876 14.4866 16 6455 18.9771 21.4953 24.2149 27 1521 30.3243 13 13.8093 14.6803 15.6178 22.9534 28.0291 34 3519 13 18.5312 21.3843 24.5227 27.9750 31.7725 359497 14 15.9739 17.0863 18.8821 21.0151 23.2760 26.0192 32.3926 40.5047 14 14.9474 16.0969 17.2579 15 17.2934 18.5989 25.1290 29.3609 47.5804 15 37 2797 42.7533 16 18.6393 20.1569 25.6725 27.8881 33.0034 55.7175 16 21 5786 23.6575 25.8404 28.1324 17 18.4304 20.0121 15.0258 16.6268 18.2919 20.0236 21.8245 23.6975 25.6454 27.6712 29.7781 41.6459 56.0849 28.2129 30.8402 33.7502 36.9737 40.5447 48.8837 65.0751 21.7616 23.4144 17 18 19.6147 21.4123 30.9057 33.9990 45.5992 18 41.3013 46.0185 19 22.8406 25.1169 30.5390 33.7600 37.3790 51.1591 19 20 20.8109 22.0190 28.2432 26.8704 36.7856 40.9955 51.1601 57.2750 20 25 37.4502 41.4463 45.7620 73.1059 113.2832 172.3168 36.4593 54.8645 63.2490 84.7009 98.3471 24.2974 32.0303 40.5681 49 9945 25 55.7497 75.8364 63.4397 88.2118 72.0524 102.4436 133.3339 212.7930 2413327 434.7451 431.6635 881.1702 767 0914 1.779 0903 30 33.0660 47.7271 66.4388 90.3203 120.7998 47.5754 79.0582 94.4608 136.3075 164.4940 34.7849 41.6603 30 35 60.4621 73.6522 111.4348 138.2369 215.7108 271.0244 35 40 48.8864 60.4020 75.4013 95.0255 154.7620 199.6351 259.0565 337.8824 442 5926 40 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4,000 per year for 6 years assuming an annual interest rate of 8%? For in = 6, i = 8%), the FV factor is 7.3350 $4,000 per year for 6 years accumulates to $20,343.60 ($4,000 7.3359)
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started