Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

$$ begin { array } { 1 1 1 ) Thline text { Find the general solution of } y ^ {

$$ \begin{array}{111) Thline \text { Find the general solution of } y^{\prime \prime)-x^{2} y^{\prime)-y=0\text { by power seri) Whline \text {A} & \text { RF (recurrence formula): } a_{n+2}=\frac{-1}(n+2)(n+1)} a_{n-1} &y=a_{0}\left(1-\frac{1}{6} x^{3}+\frac{1}{180)**{6}+\cdots\right)+a_{1}\left(x-\frac{1}{12} x^{4}+\frac{1}{504) x^{7}+\cdots\right) W \text { B)} & \text { RF: } a_{n+2)=\frac{2}{(n+2)} a_{n}\text {} & y=a_{0}\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}(6)**{6}+\cdots\right)+a_{1}\left(x+\frac{2}{3}**{3}+\frac{4}{15}**{5}+\frac{8}{105)**{7}+\cdots\right) W & \text { RF: } a_{n+2}=\frac{-1}{(n+2)} a_{n-1} W & y=a_{0}\left(1-\frac{1}{3} x^{3}+\frac{1}18)**{6}+\cdots\right)+a_{1}\left(\frac{1}{4} x^{4}+\frac{1}{28) X^{7}+\cdots\right)\text {D } &\text { RF: } a_{n+2}=\frac{n-1}{(n+2)(n+1)} a_{n-1}+\frac{1}(n+2)(n+1)} a_{n} & \quad,\quad,\end{array $$ SP.SD.4091

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Concepts Of Database Management

Authors: Philip J. Pratt, Joseph J. Adamski

4th Edition

ISBN: 0619064625, 978-0619064624

More Books

Students also viewed these Databases questions