Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Birth Rates and Characteristics of Nations (n = 153, k = 5) Nation BirthRate LifeExp InfMort Density GDPCap Literate Afghanistan 41.03 46.6 144.8 42.87 800

Birth Rates and Characteristics of Nations (n = 153, k = 5)







NationBirthRateLifeExpInfMortDensityGDPCapLiterate
Afghanistan41.0346.6144.842.8780036
Albania18.5972.138.6123.31380093
Algeria22.3470.239.213.56560062
Angola46.1838.9191.78.50133042
Argentina18.2375.517.213.821200096
Armenia12.0066.641.1111.75335099
Australia12.7180.04.92.5424000100
Austria9.5878.04.497.432700098
Azerbaijan18.8463.182.790.05310097
Bangladesh25.1260.968.1926.23175056
Belarus9.8668.314.149.79820098
Belgium10.5878.14.6336.762610098
Benin43.6649.788.560.27104038
Bhutan35.2653.2106.844.56120042
Bolivia26.4164.457.57.69260083
Bosnia/Herzeg.12.7672.023.577.54180093
Botswana28.0435.964.72.65780070
Brazil18.0863.635.920.68740083
Bulgaria8.0571.514.268.72620098
Burkina Faso44.3446.1105.345.96104036
Burundi39.8745.970.0229.0060036
Cambodia32.9357.164.070.57150035
Cameroon35.6654.468.834.04170063
Canada11.0979.75.03.202770097
Central Africa36.6043.6103.85.85130060
Chad47.7451.393.57.01103040
Chile16.4676.19.120.481000095
China15.8571.927.3133.82430082
China, Hong Kong10.9279.85.76688.032500092
Colombia21.9970.923.236.01630091
Congo, Republic of37.9147.797.98.6590075
Congo, Democratic Rep. of45.5549.198.123.5559077
Costa Rica19.8376.210.975.05850096
Cote d'Ivoire39.9944.792.252.11155049
Croatia12.8074.17.177.65830097
Cuba12.0876.67.3101.25230096
Czech Republic9.0875.05.5130.0514400100
Denmark11.7476.95.0124.5828000100
Dom Republic24.4073.733.4178.98580082
Ecuador25.4771.633.047.42300090
Egypt24.4164.158.670.61370051
El Salvador28.3070.327.6301.98460072
Eritrea42.2556.673.636.8174025
Estonia8.9670.012.331.3010000100
Ethiopia44.3145.198.660.0470036
Finland10.6077.83.815.3825800100
France11.9479.14.4109.262540099
Gabon27.2449.193.54.61550063
Gambia41.2554.076.4128.84177048
Georgia11.4864.751.871.18310099
Germany8.9977.84.7233.182620099
Ghana28.0857.155.684.54198065
Greece9.8278.76.380.681790097
Guatemala34.1766.944.6122.27370064
Guinea39.4946.3127.131.62197036
Guinea-Bissau38.9552.2108.537.2590034
Haiti31.4249.693.4254.55170045
Honduras31.2468.830.558.53260074
Hungary9.3471.98.8108.301200099
India23.7963.261.5318.12250052
Indonesia21.8768.639.4120.52300084
Iran17.5470.328.140.43640072
Iraq34.2067.451.754.92250058
Ireland14.6277.25.455.252730098
Israel18.9178.97.6290.302000095
Italy8.9379.35.8191.602430098
Jamaica17.7475.613.7243.84370085
Japan10.0380.93.8336.062720099
Jordan24.5877.719.657.50420087
Kazakhstan17.8363.459.06.16590098
Kenya27.6147.067.253.44100078
Korea N17.9571.322.8184.37100099
Korea S14.5574.97.6490.701800098
Kuwait21.8479.510.9118.491510079
Kyrgyzstan26.1163.675.924.29280097
Laos37.3953.991.024.40163057
Latvia8.2769.015.036.647800100
Lebanon19.9671.827.4353.63520086
Lesotho30.7247.082.672.74245083
Liberia45.9521.8130.229.52110038
Libya27.5975.927.93.05760076
Lithuania10.2269.414.355.23760098
Macedonia13.3574.312.581.11440089
Madagascar42.4155.781.928.0687080
Malawi37.1336.6120.090.3366058
Malaysia24.2271.419.768.73900084
Mali48.3747.4119.69.1584038
Mauritiana42.5454.575.32.74180041
Mauritius16.3471.516.7588.341080083
Mexico22.3672.024.552.42900090
Moldova13.8264.742.2131.03255096
Mongolia21.8064.652.01.72177098
Morocco23.6969.746.569.80370044
Mozambique36.4135.5138.624.4690042
Myanmar (Burma)19.6555.472.162.25150083
Namibia34.1739.072.42.21450038
Nepal32.9458.672.4183.76140028
Netherlands11.5878.64.3386.932580099
New Zealand14.2378.26.214.551950099
Nicaragua26.9869.432.538.80250068
Niger49.9541.9122.28.4082015
Nigeria39.2250.672.5140.6684057
Norway12.3978.93.913.9630800100
Oman37.7672.321.812.77820080
Pakistan30.4062.778.5183.67210043
Panama18.6075.919.636.86590091
Papua N.G.31.6163.856.511.17240065
Paraguay30.5074.228.814.47460092
Peru23.3670.638.221.75480088
Philippines26.8868.127.9281.75400095
Poland10.2973.79.2123.53880099
Portugal11.5076.15.8109.151730087
Puerto Rico*15.0476.09.3434.751120089
Romania10.8170.418.993.97680097
Russia9.7167.519.88.49830098
Rwanda33.2838.7117.8280.89100048
Saudi Arabia37.2568.449.611.991060078
Senegal36.9962.955.453.98158039
Serbia and Montenegro12.8073.717.4270.13237093
Sierra Leone44.5846.0144.478.2750031
Singapore12.7880.33.66428.082470094
Slovakia10.0974.28.8111.011150097
Slovenia9.2775.34.595.341600099
Somalia46.8347.0122.212.1655038
South Africa20.6345.461.835.78940085
Spain9.2979.14.979.391890097
Sri Lanka16.3672.415.7298.38325090
Sudan37.2157.367.114.80136046
Swaziland39.5937.0109.464.71420078
Sweden9.8179.83.419.732470099
Switzerland9.8479.94.4176.853110099
Syria30.1169.132.792.64320071
Taiwan14.2176.76.81622.401720094
Tajikistan32.9964.3114.846.96114098
Tanzania39.1251.777.939.3561068
Thailand16.3969.229.5121.31660094
Togo36.1154.069.393.08150052
Trinidad&Tobago13.6668.624.2226.94900094
Tunisia16.8374.228.059.99660067
Turkey17.9571.545.886.23670085
Turkmenistan28.2761.173.29.61470098
Uganda47.1543.889.4104.64120063
Ukraine9.5966.321.180.17420098
United Arab Em.18.3074.516.129.512110079
United Kingdom11.3478.05.5244.172470099
United States14.1077.46.729.143630097
Uruguay17.2875.714.319.22920097
Uzbekistan26.0963.971.757.14250099
Venezuela20.2273.624.626.63610091
Vietnam20.8969.929.3246.08210094
Yemen43.3060.666.835.4282038
Zambia41.0137.489.413.2387079
Zimbabwe24.5936.563.029.13245085


A researcher used stepwise regression to create regression models to predict BirthRate (births per 1,000) using five predictors: LifeExp (life expectancy in years). InfMort (infant mortality rate). Density (population density per square kilometer). GDPCap (Gross Domestic Product per capita), and Literate (literacy percent). Interpret these results. Regression Analysis-Stepwise Selection (best model of each size) 153 observations BirthRate is the dependent variable p-values for the coefficients LifeExp Adj R2 .722 Nvar InfMort Density GDPCap Literate 6.318 .724 805 .0000 .eeee .0000 5.334 .802 .807 .806 .811 .0242 .0311 5.261 4 .5764 5.273 .812 5 .5937 .6289 .8440 5.287 .805 .812 Click here for the Excel Data File (a) Which model (Nvar 1, 2, 3. 4. or 5) best balances fit and parsimony? The three variable model best balances fit and parsimony. (b) Does the addition of LifeExp and Density improve the model with respect to the R adj? Yes No (c) Which two variables appear to be the most significant? (You may select more than one answer. Click the box with a check mark for the correct answer and double clck to empty the box for the wrong answer.) LifeExp InfMort Density GDPCap Literate

Step by Step Solution

3.40 Rating (147 Votes )

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Thermal Physics

Authors: Charles Kittel, Herbert Kroem

2nd Edition

716710889, 978-0716710882

More Books

Students also viewed these Mathematics questions

Question

4 cubed + 10 X 20 + 8 squared 23

Answered: 1 week ago

Question

3 > O Actual direct-labour hours Standard direct-labour hours...

Answered: 1 week ago