Blue Spruce Pix currently uses a six-year-old molding machine to manufacture silver picture frames. The company paid $100,000 for the machine, which was state of the art at the time of purchase. Although the machine will likely last another ten years, it will need a $10,000 overhaul in four years. More important, it does not provide enough capacity to meet customer demand. The company currently produces and sells 14,000 frames per year, generating a total contribution margin of $97,500. Martson Molders currently sells a molding machine that will allow Blue Spruce Pix to increase production and sales to 18,000 frames per year. The machine, which has a ten-year life, sells for $122,000 and would cost $10,000 per year to operate. Blue Spruce Pix's current machine costs only $8,000 per year to operate. If Blue Spruce Pix purchases the new machine, the old machine could be sold at its book value of $5,000. The new machine is expected to have a salvage value of $18,600 at the end of its ten-year life. Blue Spruce Pix uses straight-line depreciation. Click here to view the factor table. (a) Calculate the new machine's net present value assuming a 14% discount rate. {For calculation purposes, use 4decimal places as displayed in the factor table provided and round nal answer to 0 decimal place, eg. 58,971.) Net present value $ (b) Use Excel or a similar spreadsheet application to calculate the new machine's internal rate of return. (Round answer to 2 decimal places, as. 1.25%.) Internal rate of return ':I % eTextbook and Media Save for Later Attempts: 0 of 3 used (C) Calculate the new machine's payback period. (Round answer to 2 decimal places, es. 1.25.) Payback period |:| years \fAPPENDIX 9.2 Present value of an annuity of $1 per period. Periods 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 16% 18% 20% 0.9615 0.9524 0.9434 0.9346 0.9259 0.9174 0.9091 0.9009 0.8929 0.8850 0.8772 0.8621 0.8475 0.8333 1.8861 1.8594 1.8334 1.8080 1.7833 1.7591 1.7355 1.7125 1.6901 1.6681 1.6467 1.6052 1.5656 1.5278 2.7751 2.7232 2.6730 2.6243 2.5771 2.5313 2.4868 2.4437 2.4018 2.3612 2.3216 2.2459 2.1743 2.1065 3.6299 3.5460 3.4651 3.3872 3.3121 3.2397 3.1698 3.1024 3.0373 2.9745 2.9137 2.7982 2.6901 2.5887 4.4518 4.3295 4.2124 4.1002 3.9927 3.8897 3.7907 3.6959 3.6048 3.5172 3.4331 3.2743 3.1272 2.9906 5.2421 5.0757 4.9173 4.7665 4.6229 4.4859 4.3553 4.2305 4.1114 3.9975 3.8887 3.6847 3.4976 3.3255 6.0021 5.7864 5.5824 5.3893 5.2064 5.0330 4.8684 4.7122 4.5638 4.4226 4.2883 4.0386 3.8115 3.6046 6.7327 6.4632 6.2098 5.9713 5.7466 5.5348 5.3349 5.1461 4.9676 4.7988 4.6389 4.3436 4.0776 3.8372 7.4353 7.1078 6.8017 6.5152 6.2469 5.9952 5.7590 5.5370 5.3282 5.1317 4.9464 4.6065 4.3030 4.0310 10 8.1109 7.7217 7.3601 7.0236 6.7101 6.4177 6.1446 5.8892 5.6502 5.4262 5.2161 4.8332 4.4941 4.1925 11 8.7605 8.3064 7.8869 7.4987 7.1390 6.8052 6.4951 6.2065 5.9377 5.6869 5.4527 5.0286 4.6560 4.3271 12 9.3851 8.8633 8.3838 7.9427 7.5361 7.1607 6.8137 6.4924 6.1944 5.9176 5.6603 5.1971 4.7932 4.4392 13 9.9856 9.3936 8.8527 8.3577 7.9038 7.4869 7.1034 6.7499 6.4235 6.1218 5.8424 5.3423 4.9095 4.5327 14 10.5631 9.8986 9.2950 8.7455 8.2442 7.7862 7.3667 6.9819 6.6282 6.3025 6.0021 5.4675 5.0081 4.6106 15 11.1184 10.3797 9.7122 9.1079 8.5595 8.0607 7.6061 7.1909 6.8109 6.4624 6.1422 5.5755 5.0916 4.6755 16 11.6523 10.8378 10.1059 9.4466 8.8514 8.3126 7.8237 7.3792 6.9740 6.6039 6.2651 5.6685 5.1624 4.7296 17 12.1657 11.2741 10.4773 9.7632 9.1216 8 8.5436 8.0216 7.5488 7.1196 6.7291 6.3729 5.7487 5.2223 4.7746 18 12.6593 11.6896 10.8276 10.0591 9.3719 8.7556 8.2014 7.7016 7.2497 6.8399 6.4674 5.8178 5.2732 4.8122 19 13.1339 12.0853 11.1581 10.3356 9.6036 8.9501 8.3649 7.8393 7.3658 6.9380 6.5504 5.8775 5.3162 4.8435 20 13.5903 12.4622 11.4699 10.5940 9.8181 9.1285 8.5136 7.9633 7.4694 7.0248 6.6231 5.9288 5.3527 4.8696 $1 - (1 + i)n PVAn =