Can someone PLEASEEEE help me with this project!!!!
Research multi-factor linear equity model.
You are given historical time series of daily returns of 10 stocks (also given is SP500 series of returns).[Attched image is the sample ]
Build a monthly multi-factor linear model of the universe of these 10 stocks. For the monthly model convert the given time series into
monthly returns using a simple compounding formula.
When building the model:
- Try to determine what are the best possible factors that will
- describe the universe and
- can be extracted from the given data set
- You may rely on any additional data you can get hold of (look at BBG, google finance, etc.)
Build the model using the first 4 years of the given time series. Use last year to verify model predictions
The model is built in the following stages:
- Compute the market beta of all 10 stocks using the time series of SP500 index as market factor
- Compute the residual returns of all 10 stocks (stock return minus beta times the market factor)
- Pick 4 possible factors for the model
- Build the exposure matrix. For simplicity assume that all exposures are constant.
- Using cross-sectional regression and forward stepwise feature selection algorithm decide which factors should be used in the model (all 4, just 3, just 2?)
- In the final model, test the idiosyncratic component (stock returns minus factor returns times exposures) for correlation with the stock returns, with each factor, and with themselves. Explain your results.
- From cross-sectional regressions build time series for all factors (these will extend to 4 years)
- Compute factor covariance matrix and idiosyncratic components covariance matrix using simple covariance matrix formula
- Compute factor covariance matrix and idiosyncratic components covariance matrix using EWMA model
- Analyze the matrices - explain what you see and reason if observed covariances and correlations between factors make sense. How much do the matrices change when you change the model?
- Construct an equally weighted portfolio of all stocks in the universe.
- Compute the forecast of volatility of that portfolio based on the factor covariance matrix, factor time series, idiosyncratic covariance matrix .
- Using both covariance matrix models compute the volatility of that portfolio based on the actual stock returns 'in sample' (for the first 4 years of the data points). Compute the volatility of the portfolio 'out of sample' (based on the last year of the points you did not use).
- Compare all three volatilities. Compare the contributions to total portfolio risk (volatility) from factors to idiosyncratic contributions.
- Compute contributions from individual factors to total risk. Analyze the results
Date SPY TSLA MTLS MTB MITK IMMR IBM CFG AMD AFG AAPL O ######## -NM no 000 9 10 11 12 13 1 ######## -0.01438 -0.01135 -0.01486 -0.01685 -0.01232 -0.03409 -0.01567 -0.01795 -0.03367 -0.00972 0.023805 2 ######## -0.00038 0.001836 -0.01783 -0.00491 0.009975 -0.01176 -0.0113 -0.00894 0.052265 -0.0078 0.035387 3 ######## 0.009993 0.020416 0.058659 0.000692 0.020988 0.025132 0.010451 0.003279 -0.00331 0.013548 0.033999 4 ######## -0.00387 0.024848 -0.05013 -0.00726 -0.01451 -0.01419 -0.01169 -0.01552 0.004983 -0.00441 -0.00562 5 ######## 0.000187 0.004576 -0.00833 0.001916 -0.00982 0.04712 0.006695 0.003735 0.018182 0.003759 -0.01166 6 ######## 4.71E-05 -0.00824 0.002801 0.002608 -0.00991 -0.00875 -0.00271 -0.00083 0.001623 -0.00495 -8.81E-05 7 ######## 0.011245 0.002834 0.001397 0.003208 0.01627 0.007566 0.006993 0.005792 0.019449 0.014787 -0.00018 8 ######## 0.006301 0.005896 0.005579 0.007347 0.008621 0.006258 0.003729 -0.00288 0.012719 0.006226 0.009423 9 ######## -0.00548 0.004941 0.009709 0.004891 -0.00977 0.004975 -0.00724 0.007013 0.028257 -0.02054 -0.01666 10 ######## -0.0081 0.007423 0.07967 -0.02527 -0.0111 -0.01238 -0.00645 -0.01844 -0.03511 -0.00941 0.001508 11 ######## 0.006208 -0.01522 0.007634 0.012001 0.028678 0.028822 0.01812 0.014607 0.03481 0.004206 0.00186 12 ######## 0.004963 0.002235 -0.04924 0.001558 0.030303 -0.01827 0.009695 0.004114 0.007645 0.014728 0.007605 13 ######## -0.00905 -0.027 0.017264 -0.01011 -0.02706 -0.02109 -0.00114 -0.01475 0.01214 -0.00759 -0.01553 14 ######## 0.007546 0.016592 0.005222 0.01362 0.002418 0.034221 0.00468 0.027443 0.035982 0.006306 0.007755 15 ######## -0.0024 0.047395 0.036364 -0.00775 0.024125 -0.01471 -0.00781 -0.00445 0.005789 -0.0084 -0.00469 16 ######## -0.0051 -0.01072 0.046366 0.011111 -0.01531 -0.01119 -0.0073 0.015854 0.002878 0.009547 0.004266 17 ######## 0.004425 -0.01395 0.014371 0.013565 -0.00718 0.002516 0.003962 0.023209 -0.02726 0.013053 0.000443 18 ######## 0.000696 -0.03579 -0.04486 0.002372 -0.04337 -0.03388 -0.00127 0.004693 0.026549 -0.0025 0.00743 19 ######## -0.00343 -0.02184 -0.01483 -0.00431 -0.01889 0.015584 -0.00771 -0.0074 -0.03017 0.001977 0.001493 14 15 16 17 18 19 20 21 Date SPY TSLA MTLS MTB MITK IMMR IBM CFG AMD AFG AAPL O ######## -NM no 000 9 10 11 12 13 1 ######## -0.01438 -0.01135 -0.01486 -0.01685 -0.01232 -0.03409 -0.01567 -0.01795 -0.03367 -0.00972 0.023805 2 ######## -0.00038 0.001836 -0.01783 -0.00491 0.009975 -0.01176 -0.0113 -0.00894 0.052265 -0.0078 0.035387 3 ######## 0.009993 0.020416 0.058659 0.000692 0.020988 0.025132 0.010451 0.003279 -0.00331 0.013548 0.033999 4 ######## -0.00387 0.024848 -0.05013 -0.00726 -0.01451 -0.01419 -0.01169 -0.01552 0.004983 -0.00441 -0.00562 5 ######## 0.000187 0.004576 -0.00833 0.001916 -0.00982 0.04712 0.006695 0.003735 0.018182 0.003759 -0.01166 6 ######## 4.71E-05 -0.00824 0.002801 0.002608 -0.00991 -0.00875 -0.00271 -0.00083 0.001623 -0.00495 -8.81E-05 7 ######## 0.011245 0.002834 0.001397 0.003208 0.01627 0.007566 0.006993 0.005792 0.019449 0.014787 -0.00018 8 ######## 0.006301 0.005896 0.005579 0.007347 0.008621 0.006258 0.003729 -0.00288 0.012719 0.006226 0.009423 9 ######## -0.00548 0.004941 0.009709 0.004891 -0.00977 0.004975 -0.00724 0.007013 0.028257 -0.02054 -0.01666 10 ######## -0.0081 0.007423 0.07967 -0.02527 -0.0111 -0.01238 -0.00645 -0.01844 -0.03511 -0.00941 0.001508 11 ######## 0.006208 -0.01522 0.007634 0.012001 0.028678 0.028822 0.01812 0.014607 0.03481 0.004206 0.00186 12 ######## 0.004963 0.002235 -0.04924 0.001558 0.030303 -0.01827 0.009695 0.004114 0.007645 0.014728 0.007605 13 ######## -0.00905 -0.027 0.017264 -0.01011 -0.02706 -0.02109 -0.00114 -0.01475 0.01214 -0.00759 -0.01553 14 ######## 0.007546 0.016592 0.005222 0.01362 0.002418 0.034221 0.00468 0.027443 0.035982 0.006306 0.007755 15 ######## -0.0024 0.047395 0.036364 -0.00775 0.024125 -0.01471 -0.00781 -0.00445 0.005789 -0.0084 -0.00469 16 ######## -0.0051 -0.01072 0.046366 0.011111 -0.01531 -0.01119 -0.0073 0.015854 0.002878 0.009547 0.004266 17 ######## 0.004425 -0.01395 0.014371 0.013565 -0.00718 0.002516 0.003962 0.023209 -0.02726 0.013053 0.000443 18 ######## 0.000696 -0.03579 -0.04486 0.002372 -0.04337 -0.03388 -0.00127 0.004693 0.026549 -0.0025 0.00743 19 ######## -0.00343 -0.02184 -0.01483 -0.00431 -0.01889 0.015584 -0.00771 -0.0074 -0.03017 0.001977 0.001493 14 15 16 17 18 19 20 21