Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Can you convert the C++ program to java original prompt: Do not modify main method, except writing your name in line 83 and OPTIONAL part).

Can you convert the C++ program to java

original prompt:

  1. Do not modify main method, except writing your name in line 83 and OPTIONAL part).
  2. Implement external sort

for sort phase use normal sort,

for merge phase use two way merge to merge n sorted files (merge2way(n)),

for array sort use heapsort.

Also write merge(f1, f2, f3) to merge two sorted files f1 and f2 into f3..

  1. OPTIONAL EXTRA POINT: Write mergenway(n) method and print execution time of both merges for initial input file over 10MB data.

// C++ program to implement // external sorting using // merge sort #include using namespace std;

struct MinHeapNode { // The element to be stored int element;

// index of the array from which // the element is taken int i; };

// Prototype of a utility function // to swap two min heap nodes void swap(MinHeapNode* x, MinHeapNode* y);

// A class for Min Heap class MinHeap { // pointer to array of elements in heap MinHeapNode* harr;

// size of min heap int heap_size;

public: // Constructor: creates a min // heap of given size MinHeap(MinHeapNode a[], int size);

// to heapify a subtree with // root at given index void MinHeapify(int);

// to get index of left child // of node at index i int left(int i) { return (2 * i + 1); }

// to get index of right child // of node at index i int right(int i) { return (2 * i + 2); }

// to get the root MinHeapNode getMin() { return harr[0]; }

// to replace root with new node // x and heapify() new root void replaceMin(MinHeapNode x) { harr[0] = x; MinHeapify(0); } };

// Constructor: Builds a heap from // a given array a[] of given size MinHeap::MinHeap(MinHeapNode a[], int size) { heap_size = size; harr = a; // store address of array int i = (heap_size - 1) / 2; while (i >= 0) { MinHeapify(i); i--; } }

// A recursive method to heapify // a subtree with root // at given index. This method // assumes that the // subtrees are already heapified void MinHeap::MinHeapify(int i) { int l = left(i); int r = right(i); int smallest = i; if (l < heap_size && harr[l].element < harr[i].element) smallest = l; if (r < heap_size && harr[r].element < harr[smallest].element) smallest = r; if (smallest != i) { swap(&harr[i], &harr[smallest]); MinHeapify(smallest); } }

// A utility function to swap two elements void swap(MinHeapNode* x, MinHeapNode* y) { MinHeapNode temp = *x; *x = *y; *y = temp; }

// Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { int i, j, k; int n1 = m - l + 1; int n2 = r - m;

/* create temp arrays */ int L[n1], R[n2];

/* Copy data to temp arrays L[] and R[] */ for (i = 0; i < n1; i++) L[i] = arr[l + i]; for (j = 0; j < n2; j++) R[j] = arr[m + 1 + j];

/* Merge the temp arrays back into arr[l..r]*/ // Initial index of first subarray i = 0;

// Initial index of second subarray j = 0;

// Initial index of merged subarray k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) arr[k++] = L[i++]; else arr[k++] = R[j++]; }

/* Copy the remaining elements of L[], if there are any */ while (i < n1) arr[k++] = L[i++];

/* Copy the remaining elements of R[], if there are any */ while (j < n2) arr[k++] = R[j++]; }

/* l is for left index and r is right index of the sub-array of arr to be sorted */ void mergeSort(int arr[], int l, int r) { if (l < r) { // Same as (l+r)/2, but avoids overflow for // large l and h int m = l + (r - l) / 2;

// Sort first and second halves mergeSort(arr, l, m); mergeSort(arr, m + 1, r);

merge(arr, l, m, r); } }

FILE* openFile(char* fileName, char* mode) { FILE* fp = fopen(fileName, mode); if (fp == NULL) { perror("Error while opening the file. "); exit(EXIT_FAILURE); } return fp; }

// Merges k sorted files. Names of files are assumed // to be 1, 2, 3, ... k void mergeFiles(char* output_file, int n, int k) { FILE* in[k]; for (int i = 0; i < k; i++) { char fileName[2];

// convert i to string snprintf(fileName, sizeof(fileName), "%d", i);

// Open output files in read mode. in[i] = openFile(fileName, "r"); }

// FINAL OUTPUT FILE FILE* out = openFile(output_file, "w");

// Create a min heap with k heap // nodes. Every heap node // has first element of scratch // output file MinHeapNode* harr = new MinHeapNode[k]; int i; for (i = 0; i < k; i++) { // break if no output file is empty and // index i will be no. of input files if (fscanf(in[i], "%d ", &harr[i].element) != 1) break;

// Index of scratch output file harr[i].i = i; } // Create the heap MinHeap hp(harr, i);

int count = 0;

// Now one by one get the // minimum element from min // heap and replace it with // next element. // run till all filled input // files reach EOF while (count != i) { // Get the minimum element // and store it in output file MinHeapNode root = hp.getMin(); fprintf(out, "%d ", root.element);

// Find the next element that // will replace current // root of heap. The next element // belongs to same // input file as the current min element. if (fscanf(in[root.i], "%d ", &root.element) != 1) { root.element = INT_MAX; count++; }

// Replace root with next // element of input file hp.replaceMin(root); }

// close input and output files for (int i = 0; i < k; i++) fclose(in[i]);

fclose(out); }

// Using a merge-sort algorithm, // create the initial runs // and divide them evenly among // the output files void createInitialRuns( char* input_file, int run_size, int num_ways) { // For big input file FILE* in = openFile(input_file, "r");

// output scratch files FILE* out[num_ways]; char fileName[2]; for (int i = 0; i < num_ways; i++) { // convert i to string snprintf(fileName, sizeof(fileName), "%d", i);

// Open output files in write mode. out[i] = openFile(fileName, "w"); }

// allocate a dynamic array large enough // to accommodate runs of size run_size int* arr = (int*)malloc( run_size * sizeof(int));

bool more_input = true; int next_output_file = 0;

int i; while (more_input) { // write run_size elements // into arr from input file for (i = 0; i < run_size; i++) { if (fscanf(in, "%d ", &arr[i]) != 1) { more_input = false; break; } }

// sort array using merge sort mergeSort(arr, 0, i - 1);

// write the records to the // appropriate scratch output file // can't assume that the loop // runs to run_size // since the last run's length // may be less than run_size for (int j = 0; j < i; j++) fprintf(out[next_output_file], "%d ", arr[j]);

next_output_file++; }

// close input and output files for (int i = 0; i < num_ways; i++) fclose(out[i]);

fclose(in); }

// For sorting data stored on disk void externalSort( char* input_file, char* output_file, int num_ways, int run_size) { // read the input file, // create the initial runs, // and assign the runs to // the scratch output files createInitialRuns(input_file, run_size, num_ways);

// Merge the runs using // the K-way merging mergeFiles(output_file, run_size, num_ways); }

// Driver program to test above int main() { // No. of Partitions of input file. int num_ways = 10;

// The size of each partition int run_size = 1000;

char input_file[] = "input.txt"; char output_file[] = "output.txt";

FILE* in = openFile(input_file, "w");

srand(time(NULL));

// generate input for (int i = 0; i < num_ways * run_size; i++) fprintf(in, "%d ", rand());

fclose(in);

externalSort(input_file, output_file, num_ways, run_size);

return 0; }

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

More Books

Students also viewed these Databases questions