Question: Can you show this in sage Question 4 . Decrypt Bob's response e 3 . Let R = Z x x N - 1 where

Can you show this in sage Question 4. Decrypt Bob's response e3.
Let R=ZxxN-1 where N>1. Remember, in this ring, we work
modulo the polynomial xN-1, or equivalently, with the relation that xN=
For p>1 any modulus (not necessarily prime), we denote by Rp=
(ZpZ)xxN-1, so in other words, we reduce the coefficients modulo
p, and keep the same relation on x. We do not assume p,q are prime below
unless otherwise stated. Finally, we let T(d,e) denotes the set of f(x)inR
which have d coefficients equal to +1,e coefficients equal to -1, and the re-
maining coefficients are equal to 0. As an example, x3+x-1inT(2,1) when
N4, and -x5+x2+x+1inT(3,1) for N6.
def encode(s):
s = str(s)
if len(s)>71:
print 'Error, string too long.'
return
return sum(ord(s[i])*128^i for i in range(len(s)))
def decode(n):
n = Integer(n)
v =[]
while n !=0:
v.append(chr(n %128))
n //=128
return ''.join(v)
q =2227931092922619159088137825860917778654908962259364260724799634482871993679344024477214037820250089114550582112658547035427887568025339234287716719310475274676925427488455341264359399933469547884104546673995772201433027461094946187102932478528326005620630416132860562672779096576947422455142739470761
f =626346493922296891962453123852828762226840739369641575566811218944994465423391699556882442728756781708398121951194799184723646669035568862933089972532
g =977000403491994460922837866629768065514748480840502199588478427171542192931318741506250139746005024832848394512867819725451407771971457631489150320807
h = mod(f,q)^(-1)*mod(g,q)
e =78718410001068529677588572614497505845736983903998613145157719609579915026054651042742971468860259386790104756141288441579114641145660779208031511331352898518118466155496980362017676866087191935146013866713673612565156506113920877930874410944039265560871107404980288749922814814885918909569495979623042532040822272019812413569842170256723818746065909730713382503129868557825346347038766126043524590160376367091553994881762361291104351498414443598243
q2=1227182889694546672385266772170943236816561807917967033563259284790533365147889304764034689408538624438744399079411125593580586814270762170945963595292522485021929560735267557757129789425749757337427124744082094535893262996404309760463295739614323848399904971816118159587963899577687425473195236280061
h2=44285959218806234657242064417806848999251196745309876841294546060

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!