Answered step by step
Verified Expert Solution
Question
1 Approved Answer
che Mark Welsch deposits $8,200 in an account that earns interest at an annual rate of 12%, compounded quarterly. The $8,200 plus earned interest must
che Mark Welsch deposits $8,200 in an account that earns interest at an annual rate of 12%, compounded quarterly. The $8,200 plus earned interest must remain in the account 5 years before it can be withdrawn. How much money will be in the account at the end of 5 years? (PV of $1. FV of $1. PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Round "Table Factor" to 4 decimal places.) Table Factor Total Accumulation Present Value S 8,200 Spiller Corp. plans to issue 12%, 9-year. $420,000 par value bonds payable that pay interest semiannually on June 30 and December 31. The bonds are dated December 31, 2019, and are issued on that date. (PV of $1. FV of $1. PVA of $1, and FVA of $1 (Use appropriate factor(s) from the tables provided. Round your "Table value to 4 decimal places and final answers to nearest whole dollar.) If the market rate of interest for the bonds is 10% on the date of issue, what will be the total cash proceeds from the bond issue? Table Values are Based on: n = 1 = Cash Flow Table Value Amount Present Value Present (maturity value Interest (annuity) Total cash proceeds p=1/(1 + ir TABLE B.1 Present Value of 1 Rate 9% 10% 12% 15% 8% 7% 15 2% 5% Periods 3% 6% % 0.9434 0.8900 0.8396 0.7921 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 0.9901 0.9803 0.9706 0.9610 0.9515 0.9420 0.9327 0.9235 0.9143 0.9053 0.8963 0.8874 0.8787 0.8700 0.8613 0.8528 0.8444 0.8360 0.8277 0.8195 0.7798 0.7419 0.7059 0.6717 0.9091 0.8264 0.7513 0.6830 0.6209 0.5645 0.5132 0.4665 0.4241 03855 0.3505 0.3186 0.9804 0.9612 0.9423 0.9238 0.9057 0.8880 0.8706 0.8535 0.8368 0.8203 0.8043 0.7885 0.7730 0.7579 0.7430 0.7284 0.7142 0.7002 0.6864 0.6730 0.6095 0.5521 0.5000 0.4529 0.9709 0.9426 0.9151 0.8885 0.8626 0.8375 0.8131 0.7894 0.7664 0.7441 0.7224 0.7014 0.6810 0.6611 0.6419 0.6232 0.6050 0.5874 0.5703 0.5537 0.4776 0.4120 0.3554 0.3066 0.9615 0.9246 0.8890 0.8548 0.8219 0.7903 0.7599 0.7307 0.7026 0.6756 0.6496 0.6246 0.6006 0.5775 0.5553 0.5339 0.5134 0.4936 0.4746 0.4564 0.3751 0.3083 0.2534 0.2083 0.9524 0.9070 0.8638 0.8227 0.7835 0.7462 0.7107 0.6768 0.6446 0.6139 0.5847 0.5568 0.5303 0.5051 0.4810 0.4581 0.4363 0.4155 0.3957 0.3769 0.2953 0.2314 0.1813 0.1420 0.9346 0.8734 0.8163 0.7629 0.7130 0.6663 0.6227 0 5820 0.5439 0.5083 0.4751 0.4440 0.4150 0.3878 0.3624 0.3387 0.9259 0.8573 0.7938 0.7350 0.6806 0.6302 0.5835 0.5403 0.5002 0.4632 0.4289 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2502 0.2317 0.2145 0.1460 0.0994 0.0676 0.0460 0.7473 0.7050 0.6651 0.6274 0.5919 0.5584 0.5268 0.4970 0.4688 0.4423 0.4173 0.3936 0.3714 0.3503 0.3305 0.3118 0.2330 0.1741 0.1301 0.0972 0.9174 0.8417 0.7722 0.7084 0.6499 0.5963 0.5470 0.5019 0.4604 0.4224 0.3875 0.3555 0.3262 0.2992 0.2745 0.2519 0.2311 0.2120 0.1945 0.1784 0.1160 0.0754 0.0490 0.0318 0.8929 0.7972 0.7118 0.6355 0.5674 0.5066 0.4523 0.4039 0 3606 0.3220 0.2875 0.2567 0.2292 0.2046 0.1827 0.1631 0.1456 0.1300 0.1161 0.1037 0.0588 0.0334 0.0189 0.0107 0.8696 0.7561 0.6575 0.5718 0.4972 0.4323 0.3759 0.3269 0.2843 0.2472 0.2149 0.1869 0.1625 0.1413 0.1229 0.1069 0.0929 0.0808 0.0703 0.0611 0.0304 0.0151 0.0075 0.0037 0.2897 0.3166 0.2959 0.2765 0.2584 0.1842 0.1314 0.0937 0.0668 0.2633 0.2394 0.2176 0.1978 0.1799 0.1635 0.1486 0.0923 0.0573 0.0356 0.0221 Used to put the present value of a known future amount. For example: How much would you need to invest today at 10% compounded semiannual to accumulate 5.000 in 6 years from today? Using the factions of n = 12 und i=5(12 cmiannual period and a semiannual rate of 5%), the factor is 05368. You would need to invest $2,784 today (55.000 x 0.5565), f = (1 + i)" TABLE B.2 Future Value of 1 Rate 9 % 8% 9% 10% 15% 6% 7% 12% Periods 1% 28 5% 3% 0 1 2 3 1.0000 1.1500 1.3225 1.5209 1.7490 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 1.0000 1.0100 1.0201 1.0303 1.0406 1.0510 1.0615 1.0721 1.0829 1.0937 1.1046 1.1157 1.1268 1.1381 1.1495 1.1610 1.1726 1.1843 1.1961 1.2081 1.2202 1.2824 1.3478 1.4166 1.4889 1.0000 1.0200 1.0404 1.0612 1.0824 1.1041 1.1262 1.1487 1.1717 1.1951 1.2190 1.2434 1.2682 1.2936 1.3195 1.3459 1.3728 1.4002 1.4282 1.4568 1.4859 1.6406 1.8114 1.9999 2.2080 1.0000 1.0300 1.0609 1.0927 1.1255 1.1593 1.1941 1.2299 1.2668 1.3048 1.3439 1.3842 1.4258 1.4685 1.5126 1.5580 1.6047 1.6528 1.7024 1.7535 1.8061 2.0938 2.4273 2.8139 3.2620 1.0000 1.0400 1.0816 1.1249 1.1699 1.2167 1.2653 1.3159 1.3686 1.4233 1.4802 1.5395 1.6010 1.6651 1.7317 1.8009 1.8730 1.9479 2.0258 2.1068 2.1911 2.6658 3.2434 3.9461 4.8010 1.0000 1.0500 1.1025 1.1576 1.2155 1.2763 1.3401 1.4071 1.4775 1.5513 1.6289 1.7103 1.7959 1.8856 1.9799 2.0789 2.1829 2.2920 2.4066 2.5270 2.6533 3.3864 4.3219 5.5160 7.0400 1.0000 1.0600 1.1236 1.1910 1.2625 1.3382 1.4185 1.5036 1.5938 1.6895 1.7908 1.8983 2.0122 2.1329 2.2609 2.3966 2.5404 2.6928 2.8543 3.0256 3.2071 4.2919 5.7435 7.6861 10.2857 1.0000 1.0700 1.1449 1.2250 1.3108 1.4026 1.5007 1.6058 1.7182 1.8385 1.9672 2.1049 2.2522 2.4098 2.5785 2.7590 2.9522 3.1588 3.3799 3.6165 3.8697 5.4274 7.6123 10.6766 14.9745 1.0000 1.0800 1.1664 1.2597 1.3605 1.4693 1.5869 1.7138 1.8509 1.9990 2.1589 2.3316 2.5182 2.7196 2.9372 3.1722 3.4259 3.7000 3.9960 4.3157 4.6610 6.8485 10.0627 14.7853 21.7245 1.0000 1.0900 1.1881 1.2950 1.4116 1.5386 1.6771 1.8280 1.9926 2.1719 2.3674 2.5804 28127 3.0658 3.3417 3.6425 3.9703 4.3276 4.7171 5.1417 5.6044 8.6231 13.2677 20.4140 31.4094 1.0000 1.0000 1.1000 1.1200 1.2100 1.2544 1.3310 1.4049 1.4641 1.5735 1.6105 1.7623 1.7716 1.9738 1.9487 2.2107 2.1436 2.4760 23579 2.7731 2.5937 3.1058 2.8531 3.4785 3.1384 3.8960 3.4523 4.3635 3.7975 4.8871 4.1772 5.4736 4.5950 5.0545 6.8660 5.5599 7.6900 6.1159 8.6128 6.7275 9.6463 10.8347 17.0001 17.4494 29.9599 28.1024 52.7996 45.2593 93.0510 2.0114 23131 2.6600 3.0590 3.5179 4.0456 4.6524 5.3503 6.1528 7.0757 8.1371 9.3576 10.7613 12.3755 14.2318 16.3665 32.9190 66.2118 133.1755 267.8635 6.1304 Used to compute the future value of a known present amount. For ample: What is the accumulated value of $3,000 invested today at 8% compounded quarterly for 5 years? Using the factors of 20 and i = 26 020 quarterly periods and a quarterly interest rate of 25), the factor is 1.4859. The accumulated value is 54,457.70 (53.000 x 1.4859. -=[-ation i (1 + i)" TABLE B.3 Present Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 128 15% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 0.9901 1.9704 29410 3.9020 4.8534 5.7955 6.7282 7.6517 8.5660 9.4713 10.3676 11.2551 12.1337 13.0037 13.8651 14.7179 15.5623 16.3983 17.2260 18.0456 22.0232 25.8077 29.4086 32.8347 0.9804 1.9416 28839 3.8077 4.7135 5.6014 6.4720 7.3255 8.1622 8.9826 9.7868 10.5753 11.3484 12.1062 12.8493 13.5777 14.2919 14.9920 15.6785 16.3514 19.5235 22.3965 24.9986 27.3555 0.9709 1.9135 2.8286 3.7171 4.5797 5.4172 6.2303 7.0197 7.7861 8.5302 9.2526 9.9540 10.6350 11.2961 11.9379 12.5611 13.1661 13.7535 14.3238 14.8775 17.4131 19.6004 21.4872 23.1148 0.9615 1.8861 2.7751 3.6299 4.4518 5.2421 6.0021 6.7327 7.4353 8.1109 8.7605 9.3851 9.9856 10.5631 11.118 11.6523 12.1657 12.6593 13.1339 13.5903 15.6221 17.2920 18.6646 19.7928 0.9524 1.8594 2.7232 3.5460 4.3295 5.0757 5.7864 6.4632 7.1078 7.7217 8.3064 8.8633 9.3936 9.8986 10.3797 10.8378 11.2741 11.6896 12.0853 12.4622 14.0939 15.3725 16.3742 17.1591 0.9434 1.8334 2.6730 3.4651 4.2124 4.9173 5.5824 6.2098 6.8017 7.3601 7.8869 8.3838 8.8527 9.2950 9.7122 10.1059 10.4773 10.8276 11.1581 11.4699 12.7834 13.7648 14.4982 15.0463 0.9346 1.8080 2.6243 3.3872 4.1002 4,7665 5.3893 5.9713 6.5152 7.0236 7.4987 7.9427 8.3577 8.7455 9.1079 9.4466 9.7632 10.0591 10.3356 10.5940 11.6536 12.4090 12.9477 13.3317 0.9259 1.7833 2.5771 3.3121 3.9927 4.6229 5.2064 5.7466 6.2469 6.7101 7.1390 7.5361 7.9038 8.2442 8.5595 8.8514 9.1216 9.3719 9.6036 9.8181 10.6748 11.2578 11.6546 11.9246 0.9174 1.7591 2.5313 3.2397 3.8897 4.4859 50330 5.5348 5.9952 6.4177 6.8052 7.1607 7.4869 7.7862 8.0607 8.3126 8.5436 8.7556 8.9501 9.1285 9.8226 10.2737 10.5668 10.7574 0.9091 1.7355 2.4869 3.1699 3.7908 4.3553 4.8684 5.3349 5.7590 6.1446 6.4951 6.8137 7.1034 73667 7.6061 7.8237 8.0216 8.2014 8.3649 8.5136 9.0770 9.4269 9.6442 9.7791 0.8929 1.6901 2.4018 3.0373 3.6048 4.1114 4.5638 4.9676 5.3282 5.6502 5.9377 6.1944 6.4235 6.6282 6.8109 6.9740 7.1196 7.2497 7.3658 7.4694 7.8431 8.0552 8.1755 8.2438 0.8696 1.6257 2.2832 2.8550 3.3522 3.7845 4.1604 4.4873 4.7716 5.0188 5.2337 5.4206 5.5831 5.7245 5.8474 5.9542 6.0472 6.1280 6.1982 6.2593 6.4641 6.5660 6.6166 6.6418 *Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2.000 per year for 10 years auming an al interest rate of 96 ? For = 10,1 =95), the PV factor is 6.4177. $2,000 per year for 10 years is the equivalent of $12.835 today (52.000 x 6,4177) f = [(1 + i)" - 11/1 TABLE B.4 Future Value of an Annuity of 1 Rate Periods 3% 2% 5% 6% 7% 8% 9% 12% 10% 15% 1 2 3 4 5 6 7 8 9 10 11 12 13 1.0000 1.0000 2.0100 2.0200 3.0301 3.0604 40604 4.1216 5.1010 5.2040 6.1520 6.3081 7.2135 7.4343 8.2857 8.5830 9.3685 9.7546 10.4622 10.9497 11.5668 12.1687 12.6825 13.4121 13.8093 14.6803 14.9474 15.9739 16.0969 17.2934 17.2579 18.6393 18.4304 20.0121 19.6147 21.4123 20.8109 22.8406 22.0190 24.2974 28.2432 320303 34.7849 40.5681 41.6603 49.9945 48.8864 60.4020 1.0000 20300 3.0909 4.1836 5.3091 6.4684 7,6625 8.8923 10.1591 11.4639 12.8078 14.1920 15.6178 17.0863 18.5989 20.1569 21.7616 23.4144 25.1169 26.8704 36.4593 47.5754 60.4621 75.4013 1.0000 1.0000 1.0000 20400 2.0500 2.0600 3.1216 3.1525 3.1836 4.2465 4.3101 4.3746 5.4163 5.5256 5.6371 6.6330 6.8019 6.9753 7.8983 8.1420 8.3938 9.2142 9.5491 9.8975 10.5828 11.0266 11.4913 12.0061 12.5779 13.1808 13.4864 14.2068 14.9716 15.0258 15.9171 16.8699 16.6268 17.7130 18.8821 18.2919 19.5986 21.0151 20.0236 21.5786 23.2760 21.8245 23.6575 25.6725 23.6975 25.8404 28.2129 25.6454 28.1324 30.9057 27.6712 30.5390 33.7600 29.7781 33.0660 36.7856 41.6459 47.7271 54.8645 56.0849 66.4388 79.0582 73.6522 90.3203 111.4348 95.0255 120.7998 154.7620 1.0000 2.0700 3.2149 4.4399 5.7507 7.1533 8.6540 10.2598 11.9780 13.8164 15.7836 17.8885 20.1406 22.5505 25.1290 27.8881 30.8402 33.9990 37.3790 40.9955 63.2490 94.4608 138.2369 199.6351 1.0000 20800 3.2464 4.5061 5.8666 73359 8.9228 10.6366 12.4876 14.4866 16.6455 18.9771 21.4953 24.2149 27.1521 30.3243 33.7502 37.4502 41.4463 45.7620 73.1059 113.2832 172.3168 259.0565 1.0000 1.0000 1.0000 2.0900 2.1000 2.1200 3.2781 3.3100 3.3744 4.5731 4.6410 4.7793 5.9847 6.1051 6.3528 7.5233 7.7156 8.1152 9.2004 9.4872 10.0890 11.0285 11.4359 12.2997 13.0210 13.5795 14.7757 15.1929 15.9374 17.5487 17.5603 18.5312 20.6546 20.1407 21.3843 24.1331 22.9534 24.5227 28.0291 26.0192 27.9750 323926 29.3609 31.7725 37.2797 33.0034 35.9497 42.7533 36.9737 40.5447 48 8837 41.3013 45.5992 55.7497 46.0185 51.1591 63.4397 51.1601 57.2750 72.0524 84.7009 98 3471 133.3339 136. 3075 164.4940 241.3327 215.7108 271.0244 431.6635 337.8824 442 5926 767.0914 1.0000 2.1500 3.4725 4.9934 6.7424 8.7537 11.0668 13.7268 16.7858 20.3037 24.3493 29.0017 34.3519 40.5047 47.5804 55.7175 65.0751 75.8364 88.2118 102.4436 212.7930 434.7451 881.1702 1.779.0903 15 16 17 18 19 20 25 30 35 40 sed to calculate the future value of a series of equal payments made at the end of cach period. For example: What is the future value of $4.000 per year for 6 years assuming an sa interest rate of For = 6,1 = 8%), the FV factor is 73359, 54,000 per year for 6 years accumulates to $29.343.60 (54000 x 7.3359)
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started