Click here to view factor tables. What amount must he invest today if his investment earns 12% compounded annually? What amount must he invest if his investment earns 12% annual interest compounded quarterly? (Round foctor values to 5 decimol ploces, e.8. 1.25124 and final answers to decimal places, e.8. 458.581.) Investment at 12% annual interest TABLE 6.1 Future Value of 1 (Future Value of a Single Sum) (n) FVFn,l=(1+i)n \begin{tabular}{ccccccc} Periods & 2% & 21% & 3% & 4% & 5% & 6% \\ \hline 1 & 1.02000 & 1.02500 & 1.03000 & 1.04000 & 1.05000 & 1.06000 \\ 2 & 1.04040 & 1.05063 & 1.06090 & 1.08160 & 1.10250 & 1.12360 \\ 3 & 1.06121 & 1.07689 & 1.09273 & 1.12486 & 1.15763 & 1.19102 \\ 4 & 1.08243 & 1.10381 & 1.12551 & 1.16986 & 1.21551 & 1.26248 \\ 5 & 1.10408 & 1.13141 & 1.15927 & 1.21665 & 1.27628 & 1.33823 \\ & & & & & & \\ 6 & 1.12616 & 1.15969 & 1.19405 & 1.26532 & 1.34010 & 1.41852 \\ 7 & 1.14869 & 1.18869 & 1.22987 & 1.31593 & 1.40710 & 1.50363 \\ 8 & 1.17166 & 1.21840 & 1.26677 & 1.36857 & 1.47746 & 1.59385 \\ 9 & 1.19509 & 1.24886 & 1.30477 & 1.42331 & 1.55133 & 1.68948 \\ 10 & 1.21899 & 1.28008 & 1.34392 & 1.48024 & 1.62889 & 1.79085 \\ 11 & 1.24337 & 1.31209 & 1.38423 & 1.53945 & 1.71034 & 1.89830 \\ 12 & 1.26824 & 1.34489 & 1.42576 & 1.60103 & 1.79586 & 2.01220 \\ 13 & 1.29361 & 1.37851 & 1.46853 & 1.66507 & 1.88565 & 2.13293 \\ 14 & 1.31948 & 1.41297 & 1.51259 & 1.73168 & 1.97993 & 2.26090 \end{tabular} \begin{tabular}{cccccc} 8% & 9% & 10% & 11% & 12% & 15% \\ \hline 1.08000 & 1.09000 & 1.10000 & 1.11000 & 1.12000 & 1.15000 \\ 1.16640 & 1.18810 & 1.21000 & 1.23210 & 1.25440 & 1.32250 \\ 1.25971 & 1.29503 & 1.33100 & 1.36763 & 1.40493 & 1.52088 \\ 1.36049 & 1.41158 & 1.46410 & 1.51807 & 1.57352 & 1.74901 \\ 1.46933 & 1.53862 & 1.61051 & 1.68506 & 1.76234 & 2.01136 \\ & & & & & \\ 1.58687 & 1.67710 & 1.77156 & 1.87041 & 1.97382 & 2.31306 \\ 1.71382 & 1.82804 & 1.94872 & 2.07616 & 2.21068 & 2.66002 \\ 1.85093 & 1.99256 & 2.14359 & 2.30454 & 2.47596 & 3.05902 \\ 1.99900 & 2.17189 & 2.35795 & 2.55803 & 2.77308 & 3.51788 \\ 2.15892 & 2.36736 & 2.59374 & 2.83942 & 3.10585 & 4.04556 \\ & & & & & \\ 2.33164 & 2.58043 & 2.85312 & 3.15176 & 3.47855 & 4.65239 \\ 2.51817 & 2.81267 & 3.13843 & 3.49845 & 3.89598 & 5.35025 \\ 2.71962 & 3.06581 & 3.45227 & 3.88328 & 4.36349 & 6.15279 \\ 2.93719 & 3.34173 & 3.79750 & 4.31044 & 4.88711 & 7.07571 \\ 3.17217 & 3.64248 & 4.17725 & 4.78459 & 5.47357 & 8.13706 \\ & & & & & \\ 3.42594 & 3.97031 & 4.59497 & 5.31089 & 6.13039 & 9.35762 \\ 3.70002 & 4.32763 & 5.05447 & 5.89509 & 6.86604 & 10.76126 \\ 3.99602 & 4.71712 & 5.55992 & 6.54355 & 768997 & 12.37545 \\ \hline \end{tabular} TABLE 6.2 Present Value of 1 (Present Value of a Single Sum) PVFn,i=(1+i)n1=(1+i)n \begin{tabular}{cccccccc} 8% & 9% & 10% & 11% & 12% & 15% & Periods \\ \hline .92593 & .91743 & .90909 & .90090 & .89286 & .86957 & 1 \\ .85734 & .84168 & .82645 & .81162 & .79719 & .75614 & 2 \\ .79383 & .77218 & .75132 & .73119 & .71178 & .65752 & 3 \\ .73503 & .70843 & .68301 & .65873 & .63552 & .57175 & 4 \\ .68058 & .64993 & .62092 & .59345 & .56743 & .49718 & 5 \\ & & & & & & & \\ .63017 & .59627 & .56447 & .53464 & .50663 & .43233 & 6 \\ .58349 & .54703 & .51316 & .48166 & .45235 & .37594 & 7 \\ .54027 & .50187 & .46651 & .43393 & .40388 & .32690 & 8 \\ .50025 & .46043 & .42410 & .39092 & .36061 & .28426 & 9 \\ .46319 & .42241 & .38554 & .35218 & .32197 & .24719 & 10 \\ & & & & & & 19 \\ .42888 & .38753 & .35049 & .31728 & .28748 & .21494 & 11 \\ .39711 & .35554 & .31863 & .28584 & .25668 & .18691 & 12 \\ .36770 & .32618 & .28966 & .25751 & .22917 & .16253 & 13 \\ .34046 & .29925 & .26333 & .23199 & .20462 & .14133 & 14 \\ .31524 & .27454 & .23939 & .20900 & .18270 & .12289 & 15 \\ .29189 & .25187 & .21763 & .18829 & .16312 & .10687 & 16 \\ .27027 & .23107 & .19785 & .16963 & .14564 & .09293 & 17 \\ \hline \end{tabular} TABLE 6.3 Future Value of an Ordinary Annuity of 1