Question
Combine the classes of the response variable into two meta classes so that it is NoMore versus others. Publishers want to ID those who might
Combine the classes of the response variable into two meta classes so that it is NoMore versus others. Publishers want to ID those who might stop using the book to take proactive action. 1. Split the data into training (60%) and validation (40%) datasets. Use the random seed 202. 2. Run Logistic Regression, KNN and Neural Nets models. Report the validation confusion matrix for each of the three models. 3. Compare the error rates of validation sets for the three individual methods. 4. Produce gains and decile lift charts on the validation set using your models and compare their performance..
University | Enrollment | AvgSAT | PctTenure | PCLabs | PctOwnPC | Tuition | Status |
1 | 17455 | 1068 | 0.793 | 154 | 0.465 | 17400 | Never |
2 | 14445 | 1173 | 0.846 | 162 | 0.506 | 16300 | Never |
3 | 14773 | 1122 | 0.809 | 158 | 0.68 | 15600 | Never |
4 | 16138 | 992 | 0.634 | 133 | 0.542 | 10100 | Never |
5 | 16717 | 1141 | 0.807 | 123 | 0.644 | 16500 | Never |
6 | 18002 | 1109 | 0.845 | 127 | 0.509 | 10300 | Never |
7 | 14030 | 1180 | 0.852 | 146 | 0.565 | 14200 | Never |
8 | 17459 | 1146 | 0.79 | 144 | 0.576 | 14100 | Never |
9 | 13931 | 1127 | 0.788 | 126 | 0.6 | 13300 | Never |
10 | 13046 | 984 | 0.718 | 143 | 0.417 | 17700 | Never |
11 | 17171 | 1121 | 0.768 | 148 | 0.491 | 13200 | Never |
12 | 14944 | 1230 | 0.807 | 161 | 0.7 | 13200 | Never |
13 | 13300 | 1194 | 0.836 | 173 | 0.53 | 19700 | Never |
14 | 14399 | 1178 | 0.837 | 160 | 0.66 | 14900 | Never |
15 | 12743 | 1035 | 0.88 | 116 | 0.47 | 16300 | Never |
16 | 14170 | 1215 | 0.792 | 175 | 0.481 | 14700 | Never |
17 | 12570 | 1283 | 0.9 | 147 | 0.65 | 19800 | Never |
18 | 14214 | 1061 | 0.9 | 120 | 0.523 | 13100 | Never |
19 | 14551 | 1338 | 0.852 | 170 | 0.563 | 20600 | Never |
20 | 13745 | 1097 | 0.801 | 130 | 0.516 | 12900 | Never |
21 | 14254 | 1145 | 0.748 | 131 | 0.529 | 14900 | Never |
22 | 17633 | 973 | 0.809 | 140 | 0.435 | 12800 | Never |
23 | 13873 | 1074 | 0.824 | 160 | 0.505 | 16000 | Never |
24 | 17190 | 1042 | 0.764 | 156 | 0.518 | 16000 | Never |
25 | 13769 | 1216 | 0.805 | 159 | 0.633 | 17000 | Never |
26 | 12812 | 1206 | 0.762 | 137 | 0.518 | 14600 | Never |
27 | 15261 | 1228 | 0.793 | 175 | 0.539 | 17300 | Never |
28 | 14724 | 1035 | 0.757 | 166 | 0.584 | 14500 | Never |
29 | 13071 | 1091 | 0.809 | 108 | 0.478 | 13700 | Never |
30 | 14238 | 1072 | 0.81 | 188 | 0.595 | 17200 | Never |
31 | 12429 | 1222 | 0.907 | 186 | 0.545 | 17700 | Never |
32 | 14002 | 1114 | 0.765 | 134 | 0.615 | 18300 | Never |
33 | 12216 | 1170 | 0.825 | 158 | 0.58 | 14200 | Never |
34 | 17597 | 989 | 0.76 | 139 | 0.245 | 7400 | Never |
35 | 18677 | 1235 | 0.74 | 170 | 0.612 | 11800 | Never |
36 | 14965 | 1250 | 0.866 | 140 | 0.64 | 13800 | Never |
37 | 15416 | 1098 | 0.771 | 179 | 0.494 | 15700 | Never |
38 | 12783 | 1212 | 0.748 | 105 | 0.605 | 11700 | Never |
39 | 15072 | 1225 | 0.929 | 151 | 0.638 | 17400 | Never |
40 | 14177 | 980 | 0.791 | 128 | 0.577 | 14000 | Never |
41 | 16326 | 1025 | 0.673 | 129 | 0.414 | 11800 | NoMore |
42 | 15580 | 939 | 0.612 | 78 | 0.436 | 8800 | NoMore |
43 | 11617 | 1023 | 0.681 | 122 | 0.583 | 16800 | NoMore |
44 | 18085 | 850 | 0.58 | 164 | 0.351 | 9100 | NoMore |
45 | 15829 | 800 | 0.494 | 71 | 0.357 | 5400 | NoMore |
46 | 15401 | 787 | 0.509 | 47 | 0.323 | 4700 | NoMore |
47 | 15469 | 956 | 0.589 | 124 | 0.497 | 8700 | NoMore |
48 | 15517 | 877 | 0.593 | 81 | 0.392 | 11300 | NoMore |
49 | 15720 | 917 | 0.529 | 110 | 0.301 | 6900 | NoMore |
50 | 17307 | 976 | 0.599 | 133 | 0.621 | 12700 | NoMore |
51 | 18105 | 918 | 0.508 | 130 | 0.449 | 8600 | NoMore |
52 | 14828 | 864 | 0.581 | 95 | 0.435 | 9200 | NoMore |
53 | 16715 | 1059 | 0.634 | 117 | 0.521 | 9400 | NoMore |
54 | 14261 | 960 | 0.578 | 136 | 0.53 | 13800 | NoMore |
55 | 16264 | 905 | 0.668 | 81 | 0.532 | 15700 | NoMore |
56 | 14026 | 995 | 0.636 | 61 | 0.375 | 7600 | NoMore |
57 | 16160 | 840 | 0.626 | 48 | 0.321 | 4400 | NoMore |
58 | 15439 | 1035 | 0.63 | 114 | 0.474 | 12800 | NoMore |
59 | 10810 | 929 | 0.657 | 56 | 0.538 | 9400 | NoMore |
60 | 14612 | 824 | 0.498 | 112 | 0.461 | 8000 | NoMore |
61 | 12888 | 1112 | 0.619 | 78 | 0.684 | 9900 | NoMore |
62 | 11957 | 1108 | 0.631 | 148 | 0.542 | 13600 | NoMore |
63 | 12154 | 952 | 0.684 | 124 | 0.405 | 7700 | NoMore |
64 | 10946 | 809 | 0.803 | 34 | 0.52 | 16100 | NoMore |
65 | 11891 | 892 | 0.606 | 96 | 0.439 | 7900 | NoMore |
66 | 13922 | 955 | 0.686 | 123 | 0.448 | 12300 | NoMore |
67 | 14520 | 912 | 0.601 | 127 | 0.35 | 9400 | NoMore |
68 | 17968 | 864 | 0.665 | 97 | 0.294 | 8100 | NoMore |
69 | 10916 | 987 | 0.675 | 75 | 0.582 | 8600 | NoMore |
70 | 15363 | 818 | 0.534 | 87 | 0.231 | 6300 | NoMore |
71 | 18338 | 841 | 0.507 | 127 | 0.248 | 7600 | NoMore |
72 | 15147 | 874 | 0.645 | 132 | 0.379 | 13900 | NoMore |
73 | 18030 | 673 | 0.441 | 117 | 0.257 | 6700 | NoMore |
74 | 16704 | 1080 | 0.544 | 131 | 0.601 | 13500 | NoMore |
75 | 14999 | 829 | 0.541 | 72 | 0.333 | 6300 | NoMore |
76 | 14457 | 938 | 0.512 | 92 | 0.442 | 9400 | NoMore |
77 | 12602 | 981 | 0.586 | 91 | 0.596 | 13100 | NoMore |
78 | 16346 | 988 | 0.602 | 133 | 0.586 | 12300 | Still |
79 | 21555 | 1213 | 0.717 | 175 | 0.601 | 13300 | Still |
80 | 24741 | 936 | 0.681 | 193 | 0.601 | 10600 | Still |
81 | 17173 | 1073 | 0.648 | 125 | 0.634 | 10800 | Still |
82 | 19029 | 1067 | 0.72 | 148 | 0.611 | 14400 | Still |
83 | 19378 | 999 | 0.617 | 142 | 0.677 | 13700 | Still |
84 | 20707 | 974 | 0.684 | 93 | 0.444 | 11000 | Still |
85 | 24944 | 769 | 0.587 | 173 | 0.518 | 8200 | Still |
86 | 20224 | 932 | 0.555 | 186 | 0.344 | 4400 | Still |
87 | 18126 | 983 | 0.552 | 150 | 0.633 | 7700 | Still |
88 | 15750 | 854 | 0.575 | 153 | 0.593 | 15400 | Still |
89 | 19610 | 1060 | 0.595 | 189 | 0.692 | 13800 | Still |
90 | 16076 | 995 | 0.595 | 130 | 0.491 | 9200 | Still |
91 | 21176 | 1114 | 0.594 | 214 | 0.546 | 15200 | Still |
92 | 20584 | 888 | 0.552 | 104 | 0.579 | 5900 | Still |
93 | 19160 | 842 | 0.58 | 133 | 0.415 | 7500 | Still |
94 | 18687 | 835 | 0.59 | 112 | 0.558 | 7900 | Still |
95 | 16373 | 1016 | 0.568 | 181 | 0.503 | 9100 | Still |
96 | 18616 | 899 | 0.552 | 136 | 0.367 | 10100 | Still |
97 | 18853 | 938 | 0.643 | 195 | 0.605 | 11800 | Still |
98 | 20091 | 1000 | 0.556 | 187 | 0.53 | 11000 | Still |
99 | 20415 | 948 | 0.632 | 119 | 0.435 | 8100 | Still |
100 | 22010 | 846 | 0.51 | 162 | 0.424 | 6900 | Still |
101 | 19816 | 993 | 0.471 | 143 | 0.348 | 9600 | Still |
102 | 15641 | 1003 | 0.657 | 192 | 0.596 | 16000 | Still |
103 | 17743 | 947 | 0.621 | 133 | 0.509 | 4600 | Still |
104 | 21085 | 981 | 0.577 | 132 | 0.557 | 7200 | Still |
105 | 19378 | 868 | 0.545 | 109 | 0.523 | 4400 | Still |
106 | 24108 | 789 | 0.512 | 164 | 0.326 | 2800 | Still |
107 | 20918 | 885 | 0.535 | 134 | 0.427 | 5400 | Still |
108 | 20353 | 973 | 0.564 | 153 | 0.604 | 12000 | Still |
109 | 19182 | 955 | 0.606 | 171 | 0.468 | 6600 | Still |
110 | 18713 | 955 | 0.617 | 156 | 0.613 | 7400 | Still |
111 | 15143 | 924 | 0.544 | 134 | 0.457 | 9000 | Still |
112 | 18436 | 989 | 0.568 | 169 | 0.338 | 8700 | Still |
113 | 18688 | 1028 | 0.659 | 146 | 0.588 | 12100 | Still |
114 | 19954 | 779 | 0.5 | 134 | 0.42 | 12400 | Still |
115 | 20276 | 1048 | 0.65 | 165 | 0.461 | 7500 | Still |
116 | 19121 | 912 | 0.612 | 167 | 0.595 | 11500 | Still |
117 | 20965 | 1016 | 0.571 | 161 | 0.57 | 6300 | Still |
118 | 23793 | 800 | 0.63 | 162 | 0.519 | 10800 | Still |
119 | 19238 | 892 | 0.639 | 180 | 0.528 | 14000 | Still |
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started