Compound Interest Factors Single Payment Compound Uniform Payment Series Present Amount Sinking Worth Capital Fund Compound Present Factor Factor Recovery Factor Amount Find F Find P Factor Worth Find A Factor Find A Factor Given P Given F Find F Given F Find P F/P P/F Given P A/F Given A Given A A/P 1.080 F/A 9259 P/A 1.0000 1.166 1.0800 .8573 1.000 4808 0.926 1.260 5608 .7938 2.080 .3080 1.783 1.360 3880 .7350 3.246 2.577 JOOVA VIAWN - 3 1.469 .2219 3019 6806 4.506 1705 3.312 2505 5.867 1.587 3.993 6302 . 1363 1.714 2163 .5835 7.336 .1121 4.623 1.851 1921 5403 8.923 5.206 0940 1.999 1740 5002 10.637 .0801 5.747 2.159 1601 4632 12.488 6.247 0690 1490 14.487 11 6.710 2.332 4289 0601 1401 12 2.518 16.645 .3971 7.139 0527 . 1327 13 18.977 2.720 7.536 .3677 0465 .1265 14 21.495 2.937 .3405 7.904 0413 15 . 1213 3.172 24.215 .3152 8.244 0368 1168 27.152 8.559 16 3.426 2919 0330 1130 30.324 8.851 17 3.700 .2703 0296 1096 33.750 9.122 18 3.996 .2502 0267 1067 37.450 9.372 19 4.316 .2317 0241 1041 41.446 9.604 20 4.661 2145 0219 1019 45.762 9.818 21 5.034 1987 0198 0998 50.423 10.017 5.437 1839 0180 0980 55.457 10.201 23 5.871 1703 .0164 0964 60.893 10.371 24 6.341 1577 0150 0950 66.765 10.529 25 6.848 .1460 0137 0937 73.106 10.675 26 7.396 1352 0125 0925 79.954 10.810 27 7.988 . 1252 01 14 0914 87.351 10.935 28 8.627 .1159 0105 0905 95.339 1.051 29 9.317 . 1073 00962 0896 103.966 11.158 30 10.063 0994 00883 0888 13.283 1 1.258 0920 00811 0881 123.346 1 1.350 31 10.868 11.737 0852 00745 0875 134.214 11.435 12 676 0780 00685 0860 145 051 11 5143/4% Compound Interest Factors Single Payment Uniform Payment Series Compound Present Sinking Capital Amount Compound Worth Present Fund Recovery Factor Amount Worth Factor Factor Factor Find F Factor Factor Find P Find A Find A Given P Find F Find P Given F Given F Given P Given A F/P Given A P/F A/F A/P F/A P/A 1.008 9926 1.0000 1.0075 1.000 0.993 1.015 9852 4981 .5056 2.008 1.978 1.023 9778 3308 .3383 3.023 2.956 1.030 9706 2472 2547 4.045 3.926 1.038 9633 1970 2045 5.076 4.889 1.046 9562 1636 1711 6.114 5.846 1.054 .9490 1397 .1472 7.160 6.795 1.062 9420 .1218 .1293 8.213 7.737 1.070 9350 .1078 .1153 9.275 8.672 10 1.078 9280 0967 1042 10.344 9.600 11 1.086 9211 0876 0951 1 1.422 10.521 12 1.094 9142 .0800 0875 12.508 11.435 13 1.102 9074 0735 .0810 13.602 12.342 14 1.110 9007 0680 0755 14/704 13.243 15 1.119 8940 0632 0707 15.814 14.137 16 1.127 8873 0591 0666 16.932 15.024 17 1.135 .8807 0554 0629 18.059 15.905 18 1.144 .8742 0521 0596 19.195 16.779 19 1.153 .8676 0492 0567 20.339 17.647 20 1.161 8612 0465 0540 21.491 18.508 21 1.170 8548 0441 0516 22.653 19.363 22 1.179 8484 0420 0495 23.823 20.211 23 1.188 .8421 .0400 0475 25.001 21.053 24 1.196 8358 0382 0457 26.189 21.889 25 1.205 .8296 0365 0440 27.385 22.719 26 1.214 8234 0350 0425 28.591 23.542 27 1.224 8173 0336 0411 29.805 24.360 28 1.233 8112 0322 0397 31.029 25.171 29 1.242 8052 0310 0385 32.261 25.976 30 1.251 7992 0298 0373 33.503 26.775 36 1.309 7641 0243 0318 41.153 31.447 40 1.348 7416 .0215 0290 46.447 34.447 48 1.431 6986 .0174 .0249 57.521 40.185 50 1.453 6882 0166 0241 60.395 41.567 1.475 6780 0158 0233 63.312 42.928 60 1.566 6387 0133 0208 75.425 48.174 1.687 5927 .0109 0184 91.621 54.305Extra credit: Answer each question true (T) or false (F). (2 points each) a) When presented with several alternatives within your budget, always select the one with the highest internal rate of return? b) If the internal rate of return IRR of a project is greater than the MARR, then the external rate of return ERR will also be greater than the MARR? c) To compare alternatives having unequal lifetimes, you must repeat each project for as many times as required for all projects to have the same analysis period. d) After-tax cash flow in year k (ATCF) equals revenues Rk - expenses Ek minus depreciation dk. e) The after-tax MARR that we use to compute the PW of after-tax flows for a project is greater than the approximate before-tax MARR assuming a positive tax rate