Question
Consider a solitary worker queueing framework in which clients show up as per a reestablishment measure. Every client gets an irregular measure of work, picked
Consider a solitary worker queueing framework in which clients show up as per a
reestablishment measure. Every client gets an irregular measure of work, picked autonomously
as indicated by the dispersion G. The worker serves each client in turn. Nonetheless, the worker
measures work at rate I per unit time at whatever point there are I clients in the framework. For
example, if a client with responsibility 8 enters setuice when there are three different clients
holding up in line, at that point if nobody else shows up that client will invest 2 units of energy in help. It
another client shows up after 1 unit of time, at that point our client will spend an aggregate of 1.8 units of
time in semce gave nobody else shows up.
Let Widenote the measure of time client I spends in the framework. Additionally, characterize E[WI by
lim (WI ...+ Wn)/n
thus E[WI is the normal measure of time a client spends in the framework.
Allow N to signify the quantity of clients that show up in a bustling period.
(a) Argue that
Let L/mean the measure of work client I brings into the framework; and s.o the 4, I 2 1, are
free arbitrary factors having conveyance G.
(b) Argue that whenever t, the amount of the occasions spent in the framework by all appearances preceding t is
equivalent to the aggregate sum ofwork handled by time t.
Clue: Consider the rate at which the worker measures work.
(c) Argue that
(d) utilize Wald's condition (see Exercise 13) to reason that
where g is the mean ofthe appropriation G. That is, the normal time that clients spend in the
framework is equivalent to the normal work they bring to the framework.
Q66
A/G/u queueing framework is cleaned at the fixed occasions T, 2T, 3T, All clients in assistance
at the point when a cleaning starts are driven away from ahead of schedule and an expense Cl is brought about for every client
Assume that a cleaning requires some serious energy T/4, and that all clients who show up while the framework is
being cleaned are lost, and an expense C2 is caused pinnacle every one.
(a) Find the since quite a while ago run normal expense per unit time.
(b) Find the since quite a while ago run extent of time the framework is being cleaned.
Q67
Satellites are dispatched by a Poisson interaction with rate A. Each satellite will,
freely, circle the earth for an irregular time frame having dispersion F. Allow {X(t)} to signify the
number of satellites circling at time t
(a) Determine = k)
Clue: Relate this to the line.
(b) It in any event one satellite is circling, at that point messages can be sent and we say that the
framework is utilitarian. Ifthe first satellite is circled at time t = O, decide the normal time that
the framework stays utilitarian.
Clue: Make utilization of section (a) when k - O.
Q68
Every one of n skiers ceaselessly, and freely, scales and afterward skis down a specific slant.
The time it takes skier I to scale has dispersion Fi, and it is free of her chance to ski
down, which has conveyance HI, j = 1, .
, n. Let signify the absolute number of times individuals from this
bunch nave skied down the slant by time t. Additionally, let U(t) signify the quantity of skiers scaling
the slope at time t.
(a) What is limt*N
Find
(c) It all F/are remarkable with rate An and all Gi are outstanding with rate g, what is
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started