Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Consider the following code snippet for a Neural Network model: model = Sequential() model.add(Conv2D(filters=4,kernel_size=(5,5),padding='valid', activation='relu', input_shape =(32,32,1))) model.add(MaxPool2D (pool_size=(3,3),strides=(1,1))) model.add(Conv2D(filters=2,kernel_size=(5,5),padding='valid', activation='relu') model.add(MaxPool2D (pool_size=(3,3),strides= (1,1)) )

image text in transcribed Consider the following code snippet for a Neural Network model: model = Sequential() model.add(Conv2D(filters=4,kernel_size=(5,5),padding='valid', activation='relu', input_shape =(32,32,1))) model.add(MaxPool2D (pool_size=(3,3),strides=(1,1))) model.add(Conv2D(filters=2,kernel_size=(5,5),padding='valid', activation='relu') model.add(MaxPool2D (pool_size=(3,3),strides= (1,1)) ) model.add(Flatten()) model.add(Dense(units=20,activation='relu')) model.add(Dense(units=5, activation='softmax')) model.compile(optimizer=tf.optimizers.Adam(LEARNING_RATE=0.01) ,loss='categorical_crossentropy',metrics=['accuracy']) a. Explain the architecture of the model from the given code snippet briefly. [10] b. Determine the dimension of the outputs of each of the layers. Thus, compute the number of model parameters of the whole architecture. [10]

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Data Mining Concepts And Techniques

Authors: Jiawei Han, Micheline Kamber, Jian Pei

3rd Edition

0123814790, 9780123814791

More Books

Students also viewed these Databases questions