Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Could you help to fix that error of MATLAB code for b c d question: + Error: Index in position 2 exceeds array bounds (

Could you help to fix that error of MATLAB code for b c d question:
+ Error: Index in position 2 exceeds array bounds (must not exceed 3).
Error in Untitled11>music_spectrum (line 61)
a_theta = A(:, i);
Error in Untitled11(line 44)
P_music = music_spectrum(theta_scan, A, noise_eigvecs);
+MATLAB code:
% Define initial parameters
M =8; % Number of sensors
d =0.5; % Normalized inter-element spacing
N =100; % Number of snapshots
lambda =1; % Wavelength (assuming unity for simplicity)
sigma_n2=0.1*(1+5); % Noise variance
% Given k values and DOAs
k0=0; k1=2; k2=5;
thetas =[-5*(1+k0),5*(1+k1),5*(2+k1)]; % DOAs
P =[2,2,1]; % Signal powers
% Generate signal matrix S
S = sqrt(P).'.* exp(1j *2* pi * rand(3, N)); % Signals
% Function to generate steering vector matrix
steering_vectorr = @(M, d, thetas) exp(-1j *2* pi * d *(0:M-1)'* cosd(thetas));
% Function to compute MSE
compute_msee = @(true_doa, estimated_doa) mean((true_doa - estimated_doa).^2);
% Function to compute MUSIC spectrum
music_spectrumm = @(theta_scan, A, noise_eigvecs)...
1./ arrayfun(@(theta) abs(A(:, theta)'* noise_eigvecs * noise_eigvecs' * A(:, theta))^-1,1:length(theta_scan));
% Define theta_scan range for MUSIC spectrum
theta_scan =-90:0.1:90; % Adjust the range and resolution as needed
% Part (b): Accuracy for Different Noise Variances
noise_variances = linspace(0.1* sigma_n2,10* sigma_n2,10);
mse_noise = zeros(size(noise_variances));
A = steering_vector(M, d, thetas);
for var_idx =1:length(noise_variances)
var = noise_variances(var_idx);
mse_values = zeros(1,100); % Preallocate for Monte Carlo simulations
for sim =1:100
noise = sqrt(var /2)*(randn(M, N)+1j * randn(M, N));
X = A * S + noise;
R =(X * X')/ N;
[eigvecs, eigvals]= eig(R);
[~, ind]= sort(diag(eigvals), 'descend');
noise_eigvecs = eigvecs(:, ind(size(S,1)+1:end));
P_music = music_spectrum(theta_scan, A, noise_eigvecs);
[~, max_idx]= max(P_music);
estimated_doa = theta_scan(max_idx);
mse_values(sim)= compute_mse(thetas, estimated_doa);
end
mse_noise(var_idx)= mean(mse_values);
end
% Function to compute MSE of DOA estimates
function mse = compute_mse(true_doa, estimated_doa)
mse = mean((true_doa - estimated_doa).^2);
end
% Function to compute MUSIC spectrum
function P_music = music_spectrum(theta_scan, A, noise_eigvecs)
P_music = zeros(size(theta_scan));
for i =1:length(theta_scan)
a_theta = A(:, i);
P_music(i)=1/(a_theta' *(noise_eigvecs * noise_eigvecs')* a_theta);
end
end
% Function to generate the steering vector
function A = steering_vector(M, d, thetas)
% M: Number of sensors
% d: Distance between sensors
% thetas: Angles of arrival (in degrees)
k =2* pi /1; % Wavenumber (assuming lambda=1)
A = zeros(M, length(thetas)); % Initialize A with proper dimensions
for i =1:length(thetas)
A(:, i)= exp(-1j * k * d *(0:M-1)'* cosd(thetas(i))); % Calculate each column of A
end
end
image text in transcribed

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

OpenStack Trove

Authors: Amrith Kumar, Douglas Shelley

1st Edition

1484212215, 9781484212219

More Books

Students also viewed these Databases questions

Question

When is the application deadline?

Answered: 1 week ago