Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Could you solve the questions, please? THANK YOU SO MUCH!!! Question 1 Let gift) be the population (in thousands of people) of Calculus City, as

image text in transcribed

Could you solve the questions, please? THANK YOU SO MUCH!!!

image text in transcribed
Question 1 Let gift) be the population (in thousands of people) of Calculus City, as a mction the time t (in years), where t = 0 corresponds to the year 2020. [n 2020, the population was 10000, and each year the population increases by 30%. (a) Model the p0pulation by nding a formula for g{t), using the appropriate choice of a linear, polynomial, power, trigonometric, or exponential function, or a piecewise combination thereof. (1)} Evaluate the expression 9(6), and write a semeuee explaining what this means. (c) Solve the equation g(t) = 16.9, and write a sentence explaining what this means. Question 2 Let Mt) be the population [in thousands of people) of Algebra City, as a function the time t (in years), where t = 0 correSponds to the year 2020. In 2020, the population was 20000. Between 2020 and 2030, the population grows by 5000 people per year, but then after 203] the population declines by 8% per year. (a) Model the population by finding a formula for Mt), using the appropriate choice of a linear, polynomial, power, trigonometric, or exponential function, or a piecewise combination thereof. (b) Evaluate the expression M6), and write a sentence explaining what this means. (e) Evaluate the expression h(l2), and write a sentence explaining what this means. Question 3 Population A is 20 thousand at t = l, where t is in years. It grows by 15% per year. (a) Find a formula for A(t), the p0pulati0n (in thousands} at tinie t. (b) What is the doubling time? (The doubling time is the time it takes an exponentially growing function to double. It's analogous to the half-life of an exponentially decaying function.) Question 4 Answer the following parts. (a) Write down a formula for the amount of money you would have in your account after t years if it started at $1000 and the account pays 2.5% annual interest compounded monthly. (1)} If you buy a car for $20,000 and it loses half its value every year when will the car be worth $3,000? (c)- A population is known to grow exponentially. [f it starts at 100 and is 150 after 3 months when will the population be 300? Question 5 We consider deer and wolves that live in a national park. (a) The population of deer oscillates cyclically over a 10 year span. Assume that in the year t = 3, the deer population reached its maximum value of 4000 and in the year t = 3 it was at its minimlnn value of 3000. Write down an appropriate sinusoidal model for the deer population D(t) in year t. (b) The park's wolf poliulatiOn in year t is given by the equation W(t) = 4(t 4.5)? + 400. Determine the time interval between the years [0, 10] when the wolf population is over 375

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Elementary Symbolic Logic

Authors: William Gustason, Dolph E Ulrich

2nd Edition

1478616857, 9781478616856

More Books

Students also viewed these Mathematics questions

Question

1. To take in the necessary information,

Answered: 1 week ago