Question
date / US NSA month /US SA year 1/1/2005 0:00 92 1203 2/1/2005 0:00 109 1319 3/1/2005 0:00 127 1328 4/1/2005 0:00 116 1260 5/1/2005
date / US NSA month /US SA year
1/1/2005 0:00 92 1203
2/1/2005 0:00 109 1319
3/1/2005 0:00 127 1328
4/1/2005 0:00 116 1260
5/1/2005 0:00 120 1286
6/1/2005 0:00 115 1274
7/1/2005 0:00 117 1389
8/1/2005 0:00 110 1255
9/1/2005 0:00 99 1244
10/1/2005 0:00 105 1336
11/1/2005 0:00 86 1214
12/1/2005 0:00 87 1239
1/1/2006 0:00 89 1174
2/1/2006 0:00 88 1061
3/1/2006 0:00 108 1116
4/1/2006 0:00 100 1123
5/1/2006 0:00 102 1086
6/1/2006 0:00 98 1074
7/1/2006 0:00 83 965
8/1/2006 0:00 88 1035
9/1/2006 0:00 80 1016
10/1/2006 0:00 74 941
11/1/2006 0:00 71 1003
12/1/2006 0:00 71 998
1/1/2007 0:00 66 891
2/1/2007 0:00 68 828
3/1/2007 0:00 80 833
4/1/2007 0:00 83 887
5/1/2007 0:00 79 842
6/1/2007 0:00 73 793
7/1/2007 0:00 68 778
8/1/2007 0:00 60 699
9/1/2007 0:00 53 686
10/1/2007 0:00 57 727
11/1/2007 0:00 45 641
12/1/2007 0:00 44 619
1/1/2008 0:00 44 627
2/1/2008 0:00 48 593
3/1/2008 0:00 49 535
4/1/2008 0:00 49 536
5/1/2008 0:00 49 504
6/1/2008 0:00 45 487
7/1/2008 0:00 43 477
8/1/2008 0:00 38 435
9/1/2008 0:00 35 433
10/1/2008 0:00 32 393
11/1/2008 0:00 27 389
12/1/2008 0:00 26 377
1/1/2009 0:00 24 336
2/1/2009 0:00 29 372
3/1/2009 0:00 31 339
4/1/2009 0:00 32 337
5/1/2009 0:00 34 376
6/1/2009 0:00 37 393
7/1/2009 0:00 38 411
8/1/2009 0:00 36 418
9/1/2009 0:00 30 386
10/1/2009 0:00 33 396
11/1/2009 0:00 26 375
12/1/2009 0:00 24 352
1/1/2010 0:00 24 345
2/1/2010 0:00 27 336
3/1/2010 0:00 36 381
4/1/2010 0:00 41 422
5/1/2010 0:00 26 280
6/1/2010 0:00 28 305
7/1/2010 0:00 26 283
8/1/2010 0:00 23 282
9/1/2010 0:00 25 317
10/1/2010 0:00 23 291
11/1/2010 0:00 20 287
12/1/2010 0:00 23 326
1/1/2011 0:00 21 307
2/1/2011 0:00 22 270
3/1/2011 0:00 28 300
4/1/2011 0:00 30 310
5/1/2011 0:00 28 305
6/1/2011 0:00 28 301
7/1/2011 0:00 27 296
8/1/2011 0:00 25 299
9/1/2011 0:00 24 304
10/1/2011 0:00 25 316
11/1/2011 0:00 23 328
12/1/2011 0:00 24 341
1/1/2012 0:00 23 335
2/1/2012 0:00 30 366
3/1/2012 0:00 34 354
4/1/2012 0:00 34 354
5/1/2012 0:00 35 370
6/1/2012 0:00 34 360
7/1/2012 0:00 33 369
8/1/2012 0:00 31 375
9/1/2012 0:00 30 385
10/1/2012 0:00 29 358
11/1/2012 0:00 28 392
12/1/2012 0:00 28 399
1/1/2013 0:00 32 446
2/1/2013 0:00 36 447
3/1/2013 0:00 41 444
4/1/2013 0:00 43 441
5/1/2013 0:00 40 428
6/1/2013 0:00 43 470
7/1/2013 0:00 33 375
8/1/2013 0:00 31 381
9/1/2013 0:00 31 403
10/1/2013 0:00 36 444
11/1/2013 0:00 32 446
12/1/2013 0:00 31 433
1/1/2014 0:00 33 443
2/1/2014 0:00 35 420
3/1/2014 0:00 39 405
4/1/2014 0:00 39 403
5/1/2014 0:00 43 451
6/1/2014 0:00 38 418
7/1/2014 0:00 35 402
8/1/2014 0:00 36 456
9/1/2014 0:00 37 470
10/1/2014 0:00 38 476
11/1/2014 0:00 31 442
12/1/2014 0:00 35 497
1/1/2015 0:00 39 515
2/1/2015 0:00 45 540
3/1/2015 0:00 46 480
4/1/2015 0:00 48 502
5/1/2015 0:00 47 502
6/1/2015 0:00 44 480
7/1/2015 0:00 43 506
8/1/2015 0:00 41 518
9/1/2015 0:00 35 456
10/1/2015 0:00 39 482
11/1/2015 0:00 36 504
12/1/2015 0:00 38 546
1/1/2016 0:00 39 509
2/1/2016 0:00 45 515
3/1/2016 0:00 50 526
4/1/2016 0:00 55 571
5/1/2016 0:00 53 560
6/1/2016 0:00 50 558
7/1/2016 0:00 54 639
8/1/2016 0:00 46 584
9/1/2016 0:00 44 567
10/1/2016 0:00 46 577
11/1/2016 0:00 40 571
12/1/2016 0:00 39 561
1/1/2017 0:00 45 585
2/1/2017 0:00 51 597
3/1/2017 0:00 61 631
4/1/2017 0:00 56 589
5/1/2017 0:00 57 613
6/1/2017 0:00 56 620
7/1/2017 0:00 48 565
8/1/2017 0:00 45 560
9/1/2017 0:00 50 638
10/1/2017 0:00 49 627
11/1/2017 0:00 50 712
12/1/2017 0:00 45 657
1/1/2018 0:00 48 622
2/1/2018 0:00 54 637
3/1/2018 0:00 66 662
4/1/2018 0:00 61 637
5/1/2018 0:00 62 657
6/1/2018 0:00 56 613
7/1/2018 0:00 52 617
8/1/2018 0:00 47 598
9/1/2018 0:00 46 596
10/1/2018 0:00 43 552
11/1/2018 0:00 44 614
12/1/2018 0:00 38 564
1/1/2019 0:00 49 637
2/1/2019 0:00 57 665
3/1/2019 0:00 68 700
4/1/2019 0:00 64 664
5/1/2019 0:00 56 600
6/1/2019 0:00 66 726
7/1/2019 0:00 55 661
8/1/2019 0:00 57 706
9/1/2019 0:00 56 726
10/1/2019 0:00 55 706
11/1/2019 0:00 50 696
12/1/2019 0:00 49 731
1/1/2020 0:00 59 774
2/1/2020 0:00 63 716
3/1/2020 0:00 59 612
4/1/2020 0:00 52 570
5/1/2020 0:00 64 698
6/1/2020 0:00 79 840
7/1/2020 0:00 85 979
8/1/2020 0:00 81 977
9/1/2020 0:00 77 965
10/1/2020 0:00 78 965
11/1/2020 0:00 61 857
12/1/2020 0:00 62 919
1/1/2021 0:00 73 948
2/1/2021 0:00 64 775
Let's practice time-series forecasting of new home sales. Click here (https://www.census.gov/construction/nrs/historical_data/index.html) to see the newest data in the first table: Houses Sold (Excel file is sold_cust.xls). Look at the monthly data on the "Reg Sold" tab. If you have trouble with the link, I have recreated the data in moodle in the Excel file "A3Q3 Census Housing Data."
Only keep the dates beginning in January 2005, so delete the earlier observations, and use the data through February 2021. Keep only the US data, both the seasonally unadjusted monthly (column B) and the seasonally adjusted annual (column G). Make a new column of seasonally adjusted monthly by dividing the annual data by 12. Make a column called "t" where t will go from 1 (Jan. 2005) to 194 (Feb. 2021); make a t2 column too (since, if you look at the data, you can see sales are U-shaped; hence the quadratic). Also make a column "D" that is a dummy variable equal to one during the spring and summer months of March through August.
Determine the correlation between the unadjusted and the adjusted monthly data (=CORREL(unadjust., adjust.) in Excel), and produce scatterplots (with straight lines) of both. Do you think making a seasonal adjustment will be useful, given what you observe at this point?
Run four regressions: 1) seasonally unadjusted monthly as the dependent, and t and t2 as the independents, 2) seasonally unadjusted monthly as the dependent, and t, t2, and D as the independents, 3) seasonally adjusted monthly as the dependent, and t and t2 as the independents, and 4) seasonally adjusted monthly as the dependent, and t, t2, and D as the independents. Discuss your findings, and determine which of the four models is the best for forecasting new home sales. When interpreting your p-values, remember that, say, 1.0E-08 is 1.0 * 10^-8, which is 0.00000001. State the equation that would be used to forecast sales.
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started