Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

>dev . new ( ) plot (effect (term=RESTIME3GR , mod=model . Im, default . levels=20) , rescale . axis=FALSE) V rm( 'model. Im' ) descriptive

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
>dev . new ( ) plot (effect (term="RESTIME3GR" , mod=model . Im, default . levels=20) , rescale . axis=FALSE) V rm( 'model. Im' ) descriptive . table (vars = d (ATTIME3) , + strata = d (RESTIME3GR) , data= ASS2_12, + func. names =c ("Mean", "St. Deviation", "Valid N", "Minimum", "Maximum") ) Descriptive Statistics Variable: ATTIME3 St. RESTIME3GR Mean Deviation Valid N Minimum Maximum High 8.600 7.41 35 -12.00 21.00 W N - Low -0.853 8.91 34 -21.00 12.00 Moderate 2.324 7.31 34 -15.00 14.00 > model .Im F) RESTIME 3GR 1497 . 2 2 2.895 . 45 Residuals 4165 . 8 100 Signif. codes: 0 1 *#* 1 0. 001 1 ** ' 0. 01 ( #' 0. 05 ' . ' 0.1 ' 1 summaryin (model. Anova (model . Im, type= 'III' ) Anova Table (Type III tests) Response: ATTIME3 Sum Sq Df F value Pr () F) (Intercept) 1423.0 1 25. 0788 2. 465e-06 * * * RESTIME 3GR 77.8 2 0. 6856 0.506208 ANXIETY3 636.7 1 11.2210 0.001153 * * RESTIME 3GR : ANXIETY3 73.7 2 0. 6497 0.524474 Residuals 5503.8 97 Signif. codes: ( '* **1 0.001 1 * *1 0.01 ' *1 0.05 ' . ' 0.1 ' > summarylm (model. Im)\fSimultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts Fit: Im(formula = ATTIME3 - RESTIME3GR + ANXIETY3, data = ASS2_12, na action = na.omit) Linear Hypotheses: Estimate Std. Error f value sig. Moderate - Low == 0 1.990 1.853 1.074 0.2854 High - Low = = 0 5.785 2.096 2.760 0.0069 High - Moderate = = 0 3.795 1.945 1.951 0.0539 Note: *p=.001, "p<.01 .p p values reported> library (effects) > effect (term="RESTIME3GR", mod=model. Im) RESTIME3GR effect Low 0.785 Moderate 2.775 High 6.570Q2. Students were partitioned into 3 relatively equal groups. Based on their statistical resourcefulness at time 3 (RESTIME3) scores, determine whether these groups differ in their attitude towards statistics at time 3 (ATTIME3)( FIRST ANOVA). If the influence of the student's anxiety at time 3 (ANXIETY3) is removed, do the differences in attitude towards statistics (ATTIME3) still exist among the resourcefulness groups (ANCOVA)? Where it is applicable, explain the post hoc multiple comparison test taught in workshop. Interpret your findings. Was controlling for ANXIETY3 worth doing? Why or why not? > descriptive . table (vars = d (RESTIME3, ANXIETY3, ATTIME3) , data= ASS2_12, + func. names =c ("Mean", "St. Deviation", "Valid N", "Minimum", "Maximum") ) Descriptive Statistics St. Mean Deviation Valid N Minimum Maximum RESTIME3 130.20 22.01 103 74.00 182.00 ANXIETY3 11.74 5.64 103 0.00 24.00 ATTIME3 3,41 8,77 103 -21.00 21.00 > frequencies (ASS2 12 [c ( "RESTIME3") ] Exdigits Frequencies Frequencies Frequencies ( RESTIME3 ) Value # of Cases % Cumulative % 74 1.00 1.00 76 1.00 1.90 87 1.00 2.90 4 93 1.00 3.90 94 1.00 4.90 98 1.00 5.80 99 1.00 6.80 100 1.00 7.80 101 1.00 8.70100 1.00 7.80 9 101 1.00 8.70 10 102 1.00 9.70 11 104 1.90 11.70 12 105 1.00 12.60 13 107 1.90 14.60 14 108 1.00 15.50 15 111 1.90 17.50 16 112 1.90 19.40 17 113 1.90 21.40 18 114 1.00 22.30 19 114.48 1.00 23.30 20 115 1.00 24.30 21 115.48 1.00 25.20 22 116 1.90 27.20 23 117 1.90 29.10 24 118 2.90 32.00 25 118.67 1.00 33.00 26 119 1.90 35.00 27 120 1.00 35.90 28 121 1.00 36.90 29 122 2.90 39.80 30 123 1.90 41.70 31 124 1.90 43.70 32 126 1.00 44.70 33 127 1.90 46.60 34 128 1.90 48.50 35 129 1.90 50.50 36 129.51 1.00 51.50 37 130 1.00 52.40 38 131 1.00 53.40 39 132 3.90 57.30 40 133 2.90 60.20 41 134 1.00 61.20 42 136 1.90 63.10 43 137 1.00 64.10 44 138 1.00 65.00 45 139 1.00 66.00 46 140 1.90 68.00 47 141 2.90 70.90 48 142 1.00 71.80143 1.90 73.80 No 145 1.00 74.80 147 2.90 77.70 148 1.00 78.60 150 1.00 79.60 151 1.00 80.60 152 1.00 81.60 56 153 1.90 83.50 57 153.04 1.00 84.50 58 155 1.00 85.40 59 156 1.00 86.40 60 157 1.00 87.40 61 158 1.00 88.30 159.04 1.00 89.30 63 160 1.00 90.30 64 161 1.00 91.30 65 162 1.00 92.20 66 164.5 1.00 93.20 67 166 1.90 95.10 68 169 1.00 96.10 69 172 1.00 97.10 70 173 1.00 98.10 71 174 1.00 99.00 72 182 1.00 100.00 Case Summary ( RESTIME3 ) Valid Missing Total % Missing 1 103.00 0.00 103.00 0.00 > ASS2_12 [c ("RESTIMESGR"] ] 'Low':119:139 -> 'Moderate':140:183 -> 'High';") frequencies (A552_12 [c ("RESTIME3GR"] ] , r.digits = 1) Frequencies Frequencies ( RESTIME3GR ) # of Value Cases Cumwative % High 35 34.00 34.00 Low 34 33.00 67.00 W N Moderate 33.00 100.00 Case Summary ( RESTIME3GR ) Vald Missing Total Missing 103.00 14.00 117.00 12.00\f\f\f

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

A Short Course In Automorphic Functions

Authors: Joseph Lehner

1st Edition

0486799921, 9780486799926

More Books

Students also viewed these Mathematics questions

Question

What are the parameters in a simple linear regression model?

Answered: 1 week ago

Question

Be able to differentiate between arbitration and mediation

Answered: 1 week ago

Question

Understand how arbitrators are credentialed and selected

Answered: 1 week ago

Question

Appreciate the advantages of arbitration

Answered: 1 week ago