Question
Download the data file TRUCKING.txtDATA. The research problem is to model the price charged for trucking service in Florida. In the early 1980s, several states
Download the data file "TRUCKING.txt"DATA.
The research problem is to model the price charged for trucking service in Florida. In the early 1980s, several states removed regulatory constraints on the rate charged for intrastate trucking services, Florida being the first one to embark on a deregulation policy. The objective of the regression analysis is twofold: (1) assess the impact of deregulation on the prices charged for trucking service in Florida, and (2) estimate a model of supply price fore predicting future prices.The data (n = 134) were obtained from a particular carrier whose trucks originated from either the city of Jacksonville or Miami. The dependent variable of interest is the price in dollars charged per ton-mile. The potential predictors are:
Use the following prompts to build your model.Note: (1) The suggested R commands are not necessarily the complete command for you to just copy and paste. It's just a hint.Use the help file to find out how to call these functions in the correct way.
Import data from the .txt file into R. Tryread.table()or use the drop-down menu. If usingread.table(), remember to add the argument header=TRUE to override the default. Usedim()to check the number of rows in the dataset is equal to the correct sample size.
Usehead()andstr()to learn about the types and codings of the variables. Have all categorical variables been read in correctly as the "factor" type?
Usecor()andpairs()to check the marginal relation among the quantitative variables. What do you see?
Fit the initial "full" model. What is your full model?
Usevif()to check multicollinearity in the initial "full" model. Do the VIF values suggest you remove some of the predictors? Are these findings consistent with your findings from question 3?
Refit a new model after removing predictor(s) as suggested above. UseresidualPlots()to check the residual distribution of the fitted model. What do you see? Does a transformation seem to be needed?
If deemed necessary, conduct a transformation and refit the model. Which transformation did you choose?
Use thestep()to perform automated stepwise selection. Write down the best subset model? Also try Backward and forward selection usingstep()function. Do you see a difference in the results?
Try adding interaction terms and perform the automated stepwise selection again. Which interaction model did you arrive at?
On the final interaction model, perform a diagnostic analysis. What are your findings and conclusion?
Interpret and evaluate your final model.
trucking.txt file:
PRICPTM DISTANCE WEIGHT PCTLOAD ORIGIN MARKET DEREG CARRIER PRODUCT LNPRICE
19942 3.60 7.50 32.6 MIA LARGE YES B 100 9.9006
112162 0.25 7.50 32.6 MIA LARGE YES B 100 11.6277
72973 0.25 15.00 65.2 MIA LARGE YES B 100 11.1978
41892 0.25 24.00 100.0 MIA LARGE YES B 100 10.6428
23519 2.60 7.50 32.6 MIA LARGE YES B 100 10.0656
58221 1.50 0.25 1.1 MIA SMALL YES B 100 10.9720
25725 4.80 0.25 1.1 MIA LARGE YES B 100 10.1552
17103 4.80 7.50 32.6 MIA LARGE YES B 100 9.7470
5884 6.00 24.00 100.0 MIA SMALL YES B 100 8.6800
35079 3.00 0.25 1.1 JAX SMALL YES B 100 10.4654
33671 3.00 0.75 3.3 JAX SMALL YES B 100 10.4244
26408 3.00 3.00 13.0 JAX SMALL YES B 100 10.1814
21734 3.00 7.50 32.6 JAX SMALL YES B 100 9.9866
8390 3.00 24.00 100.0 JAX SMALL YES B 100 9.0348
37063 1.70 3.00 13.0 JAX LARGE YES B 100 10.5204
11328 1.70 24.00 100.0 JAX LARGE YES B 100 9.3350
25118 2.30 7.50 32.6 JAX SMALL YES B 100 10.1313
41988 2.10 0.75 3.3 JAX LARGE YES B 100 10.6451
32416 2.10 3.00 13.0 JAX LARGE YES B 100 10.3864
7789 3.60 24.00 100.0 MIA LARGE YES B 150 8.9605
215541 0.25 0.25 1.1 MIA LARGE YES B 150 12.2809
112162 0.25 7.50 32.6 MIA LARGE YES B 150 11.6277
72973 0.25 15.00 65.2 MIA LARGE YES B 150 11.1978
15463 2.60 15.00 65.2 MIA LARGE YES B 150 9.6462
9161 2.60 24.00 100.0 MIA LARGE YES B 150 9.1227
52703 1.50 0.75 3.3 MIA SMALL YES B 150 10.8724
40090 1.50 3.00 13.0 MIA SMALL YES B 150 10.5989
21009 4.80 3.00 13.0 MIA LARGE YES B 150 9.9527
17103 4.80 7.50 32.6 MIA LARGE YES B 150 9.7470
15541 6.00 7.50 32.6 MIA SMALL YES B 150 9.6512
11852 6.00 15.00 65.2 MIA SMALL YES B 150 9.3803
50394 1.80 0.25 1.1 MIA SMALL YES B 150 10.8276
35567 1.80 3.00 13.0 MIA SMALL YES B 150 10.4792
32343 3.40 0.25 1.1 JAX LARGE YES B 150 10.3842
24841 3.40 3.00 13.0 JAX LARGE YES B 150 10.1203
7850 3.40 24.00 100.0 JAX LARGE YES B 150 8.9682
35079 3.00 0.25 1.1 JAX SMALL YES B 150 10.4654
33671 3.00 0.75 3.3 JAX SMALL YES B 150 10.4244
26408 3.00 3.00 13.0 JAX SMALL YES B 150 10.1814
41988 2.10 0.75 3.3 JAX LARGE YES B 150 10.6451
30593 3.60 0.25 1.1 MIA LARGE YES B 200 10.3285
30218 3.60 0.75 3.3 MIA LARGE YES B 200 10.3162
133108 0.25 3.00 13.0 MIA LARGE YES B 200 11.7989
72973 0.25 15.00 65.2 MIA LARGE YES B 200 11.1978
36772 2.60 0.75 3.3 MIA LARGE YES B 200 10.5125
28846 2.60 3.00 13.0 MIA LARGE YES B 200 10.2697
15463 2.60 15.00 65.2 MIA LARGE YES B 200 9.6462
25725 4.80 0.75 3.3 MIA LARGE YES B 200 10.1552
21009 4.80 3.00 13.0 MIA LARGE YES B 200 9.9527
17103 4.80 7.50 32.6 MIA LARGE YES B 200 9.7470
6616 4.80 24.00 100.0 MIA LARGE YES B 200 8.7972
22832 6.00 0.75 3.3 MIA SMALL YES B 200 10.0359
5884 6.00 24.00 100.0 MIA SMALL YES B 200 8.6800
35567 1.80 3.00 13.0 MIA SMALL YES B 200 10.4792
28810 1.80 7.50 32.6 MIA SMALL YES B 200 10.2685
19050 1.80 15.00 65.2 MIA SMALL YES B 200 9.8548
7850 3.40 24.00 100.0 JAX LARGE YES B 200 8.9682
8390 3.00 24.00 100.0 JAX SMALL YES B 200 9.0348
30207 1.70 7.50 32.6 JAX LARGE YES B 200 10.3158
13044 3.60 15.00 65.2 JAX LARGE YES B 200 9.4761
33671 3.00 0.75 3.3 JAX SMALL YES B 200 10.4244
26408 3.00 3.00 13.0 JAX SMALL YES B 200 10.1814
21734 3.00 7.50 32.6 JAX SMALL YES B 200 9.9866
14471 3.00 15.00 65.2 JAX SMALL YES B 200 9.5799
25118 2.30 7.50 32.6 JAX SMALL YES B 200 10.1313
44562 2.10 0.25 1.1 JAX LARGE YES B 200 10.7046
10296 2.10 24.00 100.0 JAX LARGE YES B 200 9.2395
44042 3.60 0.75 3.3 MIA LARGE NO B 100 10.6929
23298 3.60 24.00 100.0 MIA LARGE NO B 100 10.0561
201871 0.25 3.00 13.0 MIA LARGE NO B 100 12.2154
165482 0.25 7.50 32.6 MIA LARGE NO B 100 12.0166
129628 0.25 24.00 100.0 MIA LARGE NO B 100 11.7724
43570 2.60 3.00 13.0 MIA LARGE NO B 100 10.6821
35906 2.60 7.50 32.6 MIA LARGE NO B 100 10.4886
20311 4.80 24.00 100.0 MIA LARGE NO B 100 9.9189
33573 6.00 0.25 1.1 MIA SMALL NO B 100 10.4215
33573 6.00 0.75 3.3 MIA SMALL NO B 100 10.4215
18353 6.00 24.00 100.0 MIA SMALL NO B 100 9.8175
30706 3.40 15.00 65.2 JAX LARGE NO B 100 10.3322
32995 3.00 15.00 65.2 JAX SMALL NO B 100 10.4041
25620 3.00 24.00 100.0 JAX SMALL NO B 100 10.1511
55679 1.70 3.00 13.0 JAX LARGE NO B 100 10.9274
44042 3.60 0.75 3.3 JAX LARGE NO B 100 10.6929
29963 3.60 15.00 65.2 JAX LARGE NO B 100 10.3077
23298 3.60 24.00 100.0 JAX LARGE NO B 100 10.0561
49962 3.00 0.25 1.1 JAX SMALL NO B 100 10.8190
32995 3.00 7.50 32.6 JAX SMALL NO B 100 10.4041
56881 2.30 0.75 3.3 JAX SMALL NO B 100 10.9487
37858 2.30 15.00 65.2 JAX SMALL NO B 100 10.5416
29760 2.30 24.00 100.0 JAX SMALL NO B 100 10.3009
60442 2.10 0.75 3.3 JAX LARGE NO B 100 11.0094
63897 3.60 0.75 3.3 MIA LARGE NO B 150 11.0650
431467 0.25 0.25 1.1 MIA LARGE NO B 150 12.9749
392479 0.25 0.75 3.3 MIA LARGE NO B 150 12.8802
251256 0.25 7.50 32.6 MIA LARGE NO B 150 12.4342
51651 2.60 7.50 32.6 MIA LARGE NO B 150 10.8523
51651 2.60 15.00 65.2 MIA LARGE NO B 150 10.8523
107145 1.50 0.75 3.3 MIA SMALL NO B 150 11.5819
39123 4.80 15.00 65.2 MIA LARGE NO B 150 10.5745
49204 6.00 0.25 1.1 MIA SMALL NO B 150 10.8037
49204 6.00 0.75 3.3 MIA SMALL NO B 150 10.8037
35125 6.00 7.50 32.6 MIA SMALL NO B 150 10.4667
46505 3.40 15.00 65.2 JAX LARGE NO B 150 10.7473
22373 3.40 24.00 100.0 JAX LARGE NO B 150 10.0156
70323 3.00 0.75 3.3 JAX SMALL NO B 150 11.1609
49385 3.00 15.00 65.2 JAX SMALL NO B 150 10.8074
63897 3.60 0.75 3.3 JAX LARGE NO B 150 11.0650
49385 3.00 15.00 65.2 JAX SMALL NO B 150 10.8074
74057 2.10 3.00 13.0 JAX LARGE NO B 150 11.2126
29163 2.10 24.00 100.0 JAX LARGE NO B 150 10.2807
60107 3.60 15.00 65.2 MIA LARGE NO B 200 11.0039
55520 3.60 24.00 100.0 MIA LARGE NO B 200 10.9245
118697 1.50 3.00 13.0 MIA SMALL NO B 200 11.6843
90288 1.50 24.00 100.0 MIA SMALL NO B 200 11.4108
46930 6.00 7.50 32.6 MIA SMALL NO B 200 10.7564
46930 6.00 15.00 65.2 MIA SMALL NO B 200 10.7564
43353 6.00 24.00 100.0 MIA SMALL NO B 200 10.6771
128997 1.80 0.25 1.1 MIA SMALL NO B 200 11.7675
87843 1.80 7.50 32.6 MIA SMALL NO B 200 11.3833
87843 1.80 15.00 65.2 MIA SMALL NO B 200 11.3833
87213 3.40 0.25 1.1 JAX LARGE NO B 200 11.3761
86576 3.40 0.75 3.3 JAX LARGE NO B 200 11.3688
75109 3.40 3.00 13.0 JAX LARGE NO B 200 11.2267
65702 3.00 7.50 32.6 JAX SMALL NO B 200 11.0929
134929 1.70 0.25 1.1 JAX LARGE NO B 200 11.8125
84492 1.70 24.00 100.0 JAX LARGE NO B 200 11.3444
84173 3.60 0.25 1.1 JAX LARGE NO B 200 11.3406
83752 3.60 0.75 3.3 JAX LARGE NO B 200 11.3356
92416 3.00 0.75 3.3 JAX SMALL NO B 200 11.4341
80214 3.00 3.00 13.0 JAX SMALL NO B 200 11.2925
75998 2.30 7.50 32.6 JAX SMALL NO B 200 11.2385
70194 2.30 24.00 100.0 JAX SMALL NO B 200 11.1590
114076 2.10 0.75 3.3 JAX LARGE NO B 200 11.6446
80555 2.10 15.00 65.2 JAX LARGE NO B 200 11.2967
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started