eck my w0rk Bringham Company issues bonds with a par value of $660,000. The bonds mature in 10 years and pay 9% annual interest in semiannual payments. The annual market rate for the bonds is 12 % (Table B.1. Table B.2. Table B.3, and Table B.4) (Use appropriate factor(s) from the tables provided.) 1. Compute the price of the bonds as of their issue date. 2. Prepare the journal entry to record the bonds' issuance. points Skipped Complete this question by entering your answers in the tabs below ellook Required 1 Required 2 Hint Print Compute the price of the bonds as of their issue date. (Round all table values to 4 decimal places, and use the rounded table values in calculations. Round intermediate calculations to the nearest dollar amount.) Table Values are Based on: n Cash Flow Table Value Amount Present Value Par (maturity) value Interest (annuity) Price of bonds 0 Journal entry worksheet 1 ped Record the issuance of the bonds for cash. ook Note: Enter debits before credits. nt Credit Transaction General Journal Debit int 1 View general journal Record entry Clear entry Chapter 10 Exercises oninect Homework /-20. b.1.jpg 880xb67 pixels b.2.jpg 861x579 pixels b.3jpg 862x 586 pixels b.4.jpg 88 TABLE B.1 p= 1/(1+i Present Value of 1 Rate Perlods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0.9434 0.9174 0.8929 0.9901 0.9804 0.9709 0.9615 0.9524 0.9346 0.9259 0.9091 0.8696 0.7972 0.9803 0.9612 0.9426 0.9246 0.9070 08900 0.8734 0.8573 0.8417 0.8264 0.7561 0.6575 3 0.9706 0.9423 0.9151 0.8890 0.8638 0.8396 0.8163 0.7938 0.7722 0.7513 0.7118 0.6355 0.5718 0.9610 0.9238 0.8885 0.8548 0.8227 0.7921 0.7629 0.7350 0.7084 0.6830 0.7130 0.6663 0.6227 0.4972 0.6806 0.6302 0.6499 0.6209 0.5674 5 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473 0.9420 0.8880 0.8375 0.8131 0.5963 0.5645 0.5066 0.4323 6 0.7903 0.7462 0.7050 0.6651 0.4523 0.3759 7 0.9327 08706 0.7599 0.7307 0.7026 0.6756 07107 0.5835 0.5470 0.5132 0.4665 0.5403 0.5019 0.4039 0.3269 0.9235 0.8535 0.7894 0.6768 0.6274 0.5820 0.5439 0.5083 0.5002 0.3606 0.2843 0.9143 0.8368 0.7664 0.4604 0.4241 0.5446 0.5919 0.2472 0.3855 0.3220 10 0.9053 0.8203 0.7441 0.6139 0.4632 0.4224 0.5584 0.3875 0.3505 0.2875 0.2149 11 0.8963 8043 0.7224 0.6496 0.5847 0.5268 0.4751 0.4289 02567 02292 02046 0.1827 0.5568 0.1869 0.7885 0.7014 0.6246 0.6006 0.5775 0.4440 0.3971 0.3555 0.3186 12 0.8874 04970 0.2897 0.1625 0.4150 0.3677 0.3262 13 0.8787 0.7730 0.6810 0.5303 0.4688 0.5051 0.2992 0.2633 0.1413 0.8700 0.7579 0.6611 0.4423 0.3878 0.3405 14 0.1229 0.1069 0.4173 0.3152 0.2745 0.2394 15 0.8613 0.7430 0,6419 0.5553 0.4810 0.3624 0.2519 0.2176 0.1631 0.6232 0.4581 0.3936 0.3387 0.2919 16 0.8528 0.7284 0.5339 0.3166 0.2703 0.2311 0.1978 0.1456 0.0929 0.7142 0.6050 0.5134 0.4363 0.3714 17 0.8444 0.2502 0.2120 0.1799 0.1300 0.0808 0.7002 0.5874 0.4936 0.4155 0.3503 0.2959 18 0.8360 0.1635 0.1161 0.0703 0.4746 0.3957 0.3305 0.2765 0.2317 0.1945 0.8277 0.6864 0.5703 19 0.2145 0.1486 0.1037 0.0611 0.6730 0.3769 0.3118 0.2584 0.1784 0.5537 0.4564 20 0.8195 0.0588 0.0334 0.0304 0.1460 0.1160 0.0923 0.4776 0.3751 0.2953 0.2330 0.1842 25 0.7798 0.6095 0.0994 0.0573 0.0356 0.0151 05521 0.5000 0.4529 0.3083 0.2534 0.2314 0.1813 0.1420 0.1741 0.1314 00754 0.4120 30 0.7419 0.0937 0.0668 0.0676 0.0490 0.0189 0.0075 0.3554 0.1301 0.0972 0.7059 0.6717 35 0.0318 0.0037 0.0460 0.0221 00107 0.2083 0.3066 40 Used to compue the present vale of a known future amoun For example: Hw mach would you noed to ivest today at 10% compousked semianually to accumulate $5,000 in 6 yean from today? Using the fackons of 12 and i 5% (12 semianal periods and a emianmal re cf 5%), the factor is 0.5568 You woukd wed to invest $2,784 today (55000x 0.5568) f (1+i Future Value of 1 Rate Perlods 1% 2% 3% 4% 5% 6% 8% 9% 10% 12% 15% 1.0000 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1,0000 1.0000 1.0000 1.0100 1.0200 1.0300 1.0400 1.0500 1.0600 1.0700 1.0800 1.0900 1.1881 1.1000 1.1200 1.1500 1.0404 2 1.0201 1.0609 1.0816 1.1025 1.1236 1.1449 1.1664 1.2100 1.2544 1.3225 1.0303 3 1.0612 1.0927 1.1576 1.1249 1.1910 1.2250 1.2597 1.2950 1.4049 1.5735 1.3310 1.5209 1.1255 4 1.0406 1.0824 1.1699 1.2155 1.3605 1.4693 1.2625 13108 14116 1.4641 1.7490 5 1,0510 1.1041 1,1593 1.2167 1.2763 1.3382 1.4026 1.5386 1.6105 1.7623 2.0114 1.0615 1.1262 1.1487 6 1.1941 1.2653 1.3401 14185 1.5007 1.5869 1.6771 1.7716 1.9738 2.2107 2.3131 7 1.0721 1.2299 1.2668 1.4071 1.7138 1.3159 1.5036- 1.6058 18280 1.9487 2.6600 1.0829 2.1436 8 1.1717 1.3686 1.4775 1.5938 1.7182 1.8509 1,9926 2.4760 3.0590 1.1951 1.0937 1.3048 1.5513 1.6289 1.9990 2.3579 1.4233 1.6895 18385 2.1719 2.7731 3.5179 10 1.1046 1.2190 1.3439 1.4802 2.5937 3.1058 4.0456 1.7908 1.9672 2.1589 2.3674 11 1.1157 1.2434 1.3842 1.5395 1.7103 1.8983 2.1049 2.3316 2.5804 2.8531 3.4785 4.6524 1.1268 2.8127 3.1384 3.8960 5.3503 12 1.2682 14258 1.6010 1.7959 2.0122 2.2522 2.5182 1.1381 4.3635 6.1528 13 12936 1.4685 1.6651 1.8856 2.1329 2.4098 2.7196 3.0658 3.4523 1.5126 1.7317 3.3417 3.7975 4.8871 7.0757 14 1.1495 1.3195 1.9799 2.2609 2.5785 2.9372 1.1610 1.1726 1.3459 3.6425 39703 4.1772 5.4736 8.1371 2.3966 2.5404 2.7590 3.1722 15 1.5580 1.8009 2.0789 45950 6.1304 9.3576 16 1.3728 1.6047 1.8730 2.1829 2.9522 3.4259 10.7613 1.4002 1.4282 3.1588 3.7000 4.3276 5.0545 6.8660 17 18 1.1843 1,6528 1.9479 2.2920 2.6928 12.3755 47171 7.6900 2.4066 3.9960 5.5599 1.1961 1.7024 2.0258 2.8543 3.3799 6.1159 8.6128 14.2318 19 1.4568 3.0256 3.6165 4.3157 5.1417 1.2081 1.7535 2.1068 2.5270 16.3665 32.9190 9.6463 1.2202 1.2824 3.8697 4.6610 5.6044 6.7275 20 1.8061 2.1911 2.6533 3.2071 1.4859 8.6231 10.8347 17.0001 2.0938 4.2919 54274 6.8485 1.6406 2.6658 3.3864 25 29.9599 52.7996 66.2118 10.0627 13.2677 17.4494 28.1024 3.2434 4.3219 5.7435 7.6123 10.6766 30 1.3478 1.8114 2.4273 133.1755 14.7853 20.4140 1.9999 2.2080 2.8139 3.9461 5.5160 7.6861 35 1.4166 267.8635 93.0510 21.7245 31.4094 45.2593 7.0400 10.2857 14.9745 40 1.4889 3.2620 4.8010 Used to compute the future valae of a known present amount. For example: What is the accumulated valse of $3,000 invested taday at R% compounded quarlerly for 5 yea? Using the factors of a m 20 and i 2% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. The accumalated value is $4,457.70 (53,000 x 1.4859 TABLE B.3 p = Present Value of an Annuity o Rate Perlods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0.9615 0.9901 0.9804 0.9709 0.9524 0.9434 0.9346 0.9259 0.9174 0.9091 0.8929 0.8696 1.7591 1.8861 1.8080 1.7833 1.6901 1.9704 1.9416 1.9135 1.8594 1.8334 1.7355 1.6257 2.7232 2.9410 2.8839 2.8286 2.7751 2.6730 2.6243 2.5771 25313 2.4869 2.4018 2.2832 3 3.7171 3.6299 3.4651 3.3872 3.3121 32397 3.0373 3.9020 3.8077 3.5460 3.1699 2.8550 3.6048 4.1114 4.8534 4.7135 4.5797 4.4518 4.3295 42124 4.1002 3.9927 3.8897 3.7908 3.3522 5 5.6014 6 5.7955 5.4172 5.2421 5.0757 4.9173 47665 4.6229 4.4859 4.3553 3.7845 5.2064 6.2303 6.0021 5.0330 4.8684 4.5638 4.1604 7 6.7282 6.4720 5.7864 5.5824 5.3893 5.5348 8 7.6517 7.3255 7.0197 6.7327 6.4632 6.2098 5.9713 5.7466 5.3349 4.9676 4.4873 6.8017 7.3601 8.5660 7.7861 6.2469 5.9952 5.7590 5.3282 4.7716 9 8.1622 7.4353 7.1078 6.5152 8.9826 6.1446 5.6502 5.0188 10 9.4713 8.5302 8.1109 7.7217 7.0236 6.7101 6.4177 7.4987 7.1390 6.8052 64951 6.8137 5.9377 5.2337 11 10.3676 9.7868 10.5753 9.2526 9.9540 8.7605 8.3064 7.8869 7.536 7.1607 11.2551 7.9427 6.1944 5.4206 12 9.3851 8.8633 8.3838 6.4235 6.6282 106350 7.4869 7.1034 5.5831 13 12.1337 11.3484 9.9856 9.3936 88527 8.3577 7.9038 5.7245 13.0037 12.1062 87455 8.2442 7.7862 7.3667 14 11.2961 10.5631 9.8986 9.2950 8.5595 8.0607 7,6061 6.8109 5.8474 15 13.8651 12.8493 11.9379 11.1184 10.3797 9.7122 9.1079 78237 6.9740 5.9542 16 14.7179 13.5777 12.5611 11.6523 10.1059 9.4466 88514 8.3126 8.5436 10.8378 8.0216 7.1196 6.0472 17 15.5623 14.2919 13.1661 12.1657 11.2741 10.4773 9.7632 9.1216 7.2497 6.1280 10.0591 9.3719 8.7556 8.2014 18 16.3983 14.9920 13.7535 12.6593 11.6896 10.8276 9.6036 8.9501 8.3649 7.3658 6.1982 19 17.2260 15.6785 14.3238 13.1339 12.0853 11.1581 10.3356 7.4694 9.1285 8.5136 6.2593 20 18.0456 16.3514 148775 13.5903 12.4622 11.4699 10.5940 9.8181 9.0770 7.8431 6.4641 19.5235 17.4131 15.6221 14.0939 12.7834 11.6536 10.6748 11.2578 9.8226 25 22.0232 6.5660 10.2737 9.4269 8.0552 30 25.8077 22.3965 19.6004 17.2920 18.6646 15.3725 13.7648 12.4090 29.4086 32.8347 12.9477 11.6546 10.5668 8.1755 66166 21.4872 16.3742 14.4982 9.6442 35 24.9986 9.7791 8.2438 6.6418 23.1148 19.7928 17.1591 15.0463 13.3317 11.9246 10.7574 40 27.3555 Used to cakulate the present value of a series of equal paymenEs made at the end of each period. For example: What is the present value of $2,000 per year for 10 years asuming an annual interest rate of 9%. For (n 10, i 9), the PV factor is 6.417. $2,000 per year for 10 years is the equivale nt of $12,835 today (52,000 x 64177) TABLE B.4 Future Value of an Annuity of 1 Rate 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Perlods 1% 2% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 2.0900 3.2781 2.0500 2.0600 2.0700 2.0800 2.1000 2.1200 2.1500 2.0100 2.0200 2.0300 2.0400 32464 3.3744 3.0604 3.1216 3.1525 3.1836 3.2149 3.3100 3.4725 3 3.0301 3.0909 4.7793 4.9934 4.2465 4.3101 4.3746 4.4399 45061 45731 4.6410 4 4.0604 4.1216 4.1836 5.9847 6.1051 6.3528 6.7424 5.1010 5.2040 5.3091 5.4163 5.5256 5.6371 5.7507 5.8666 5 8.7537 11.0668 8.1152 10.0890 6.9753 8.3938 7.1533 7.3359 75233 7.7156 6.1520 6.3081 6.4684 6.6330 6.8019 9.4872 7.6625 8.9228 9.2004 7.2135 8.2857 7.8983 8.1420 8.6540 7 7.4343 12.2997 14.7757 13.7268 10.2598 10.6366 11.0285 11.4359 8 8.5830 8.8923 9.2142 9.5491 9.8975 16.7858 12.4876 13.0210 13.5795 9 9.3685 9.7546 10.1591 10.5828 11.0266 11.4913 11.9780 14.4866 15.1929 15.9374 17.5487 20.3037 10 10.4622 10.9497 11.4639 12.0061 12.5779 13.1808 13.8164 20.6546 24.3493 14.2068 15.9171 14.9716 16.8699 18.5312 11.5668 12.8078 13.4864 15.7836 16.6455 17.5603 11 12.1687 21.3843 24.5227 24.1331 29.0017 18.9771 20.1407 12 12.6825 13.4121 14.1920 15.0258 17.8885 22.9534 26.0192 29.3609 34.3519 28.0291 13.8093 16.6268 17.7130 20.1406 21.4953 13 14.6803 15.6178 18.8821 32.3926 40.5047 27.9750 17.0863 19.5986 21.0151 22.5505 24.2149 14 14.9474 15.9739 18.2919 475804 20.0236 21.8245 31.7725 37.2797 27.1521 16.0969 17.2934 18.5989 21.5786 23.2760 25.1290 15 25.6725 28.2129 35.9497 42.7533 55.7175 27.8881 30.3243 33.0034 18.6393 20.1569 23.6575 16 17.2579 65.0751 36.9737 40.5447 48.8837 30.8402 33.7502 20.0121 21.7616 23.6975 25.8404 17 18.4304 41.3013 46.0185 45.5992 55.7497 758364 37.4502 21.4123 25.6454 28.1324 30.9057 33.9990 18 19.6147 23.4144 63.4397 88.2118 37.3790 51.1591 30.5390 33.0660 47.7271 41.4463 25.1169 27.6712 33.7600 19 20.8109 22.8406 36.7856 54.8645 45.7620 73.1059 572750 72.0524 102.4436 51.1601 40.9955 22.0190 24.2974 32.0303 26.8704 29.7781 20 847009 2127930 63.2490 98.3471 133.3339 36.4593 41.6459 25 28.2432 136.3075 164.4940 241.3327 4347451 40.5681 49.9945 94.4608 113.2832 56.0849 66.4388 79.0582 34.7849 47.5754 30 215.7108 271.0244 431.6635 3378824 442.5926 767.0914 1779.0903 881.1702 172.3168 90.3203 111.4348 138.2369 60.4621 73.6522 41.6603 35 199.6351 259.0565 95.0255 120.7998 154.7620 60.4020 754013 40 48.8864 Used to calculate the future value of a series of equal payments made at the end of each period For example: What is the futue value of 54000 per year for 6 yeans asming an annual interest rate of 8%. For (n6,i 8%), the FV factor is 7.3359 54,000 per year for 6 years accumulates to 529,34360 (54000x7.3359