Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

et's practice time-series forecasting of new home sales. Click here (https://www.census.gov/construction/nrs/historical_data/index.html) to see the newest data in the first table: Houses Sold (Excel file is

et's practice time-series forecasting of new home sales. Click here (https://www.census.gov/construction/nrs/historical_data/index.html) to see the newest data in the first table: Houses Sold (Excel file is sold_cust.xls). Look at the monthly data on the "Reg Sold" tab. If you have trouble with the link, I have recreated the data in moodle in the Excel file "A3Q3 Census Housing Data."

Only keep the dates beginning in January 2004, so delete the earlier observations, and use the data through September 2021. Keep only the US data, both the seasonally unadjusted monthly (column B) and the seasonally adjusted annual (column G). Make a new column of seasonally adjusted monthly by dividing the annual data by 12. Make a column called "t" where t will go from 1 (Jan. 2004) to 213 (September 2021); make a t2 column too (since, if you look at the data, you can see sales are U-shaped; hence the quadratic). Also make a column "D" that is a dummy variable equal to one during the spring and summer months of March through August.

Determine the correlation between the unadjusted and the adjusted monthly data (=CORREL(unadjust., adjust.) in Excel), and produce scatterplots (with straight lines) of both. Do you think making a seasonal adjustment will be useful, given what you observe at this point?

Run four regressions:

1) seasonally unadjusted monthly as the dependent, and t and t2 as the independents,

2) seasonally unadjusted monthly as the dependent, and t, t2, and D as the independents,

3) seasonally adjusted monthly as the dependent, and t and t2 as the independents,

4) seasonally adjusted monthly as the dependent, and t, t2, and D as the independents.

Discuss your findings, and determine which of the four models is the best for forecasting new home sales. When interpreting your p-values, remember that, say, 1.0E-08 is 1.0 * 10^-8, which is 0.00000001. State the equation that would be used to forecast sales.

date US NSA month US SA year seasonally adjusted monthly rate t t^2
Jan-04 89 1165 97.08 1 1
Feb-04 102 1159 96.58 2 4
Mar-04 123 1276 106.33 3 9
Apr-04 109 1186 98.83 4 16
May-04 115 1241 103.42 5 25
Jun-04 105 1180 98.33 6 36
Jul-04 96 1088 90.67 7 49
Aug-04 102 1175 97.92 8 64
Sep-04 94 1214 101.17 9 81
Oct-04 101 1305 108.75 10 100
Nov-04 84 1179 98.25 11 121
Dec-04 83 1242 103.50 12 144
Jan-05 92 1203 100.25 13 169
Feb-05 109 1319 109.92 14 196
Mar-05 127 1328 110.67 15 225
Apr-05 116 1260 105.00 16 256
May-05 120 1286 107.17 17 289
Jun-05 115 1274 106.17 18 324
Jul-05 117 1389 115.75 19 361
Aug-05 110 1255 104.58 20 400
Sep-05 99 1244 103.67 21 441
Oct-05 105 1336 111.33 22 484
Nov-05 86 1214 101.17 23 529
Dec-05 87 1239 103.25 24 576
Jan-06 89 1174 97.83 25 625
Feb-06 88 1061 88.42 26 676
Mar-06 108 1116 93.00 27 729
Apr-06 100 1123 93.58 28 784
May-06 102 1086 90.50 29 841
Jun-06 98 1074 89.50 30 900
Jul-06 83 965 80.42 31 961
Aug-06 88 1035 86.25 32 1024
Sep-06 80 1016 84.67 33 1089
Oct-06 74 941 78.42 34 1156
Nov-06 71 1003 83.58 35 1225
Dec-06 71 998 83.17 36 1296
Jan-07 66 891 74.25 37 1369
Feb-07 68 828 69.00 38 1444
Mar-07 80 833 69.42 39 1521
Apr-07 83 887 73.92 40 1600
May-07 79 842 70.17 41 1681
Jun-07 73 793 66.08 42 1764
Jul-07 68 778 64.83 43 1849
Aug-07 60 699 58.25 44 1936
Sep-07 53 686 57.17 45 2025
Oct-07 57 727 60.58 46 2116
Nov-07 45 641 53.42 47 2209
Dec-07 44 619 51.58 48 2304
Jan-08 44 627 52.25 49 2401
Feb-08 48 593 49.42 50 2500
Mar-08 49 535 44.58 51 2601
Apr-08 49 536 44.67 52 2704
May-08 49 504 42.00 53 2809
Jun-08 45 487 40.58 54 2916
Jul-08 43 477 39.75 55 3025
Aug-08 38 435 36.25 56 3136
Sep-08 35 433 36.08 57 3249
Oct-08 32 393 32.75 58 3364
Nov-08 27 389 32.42 59 3481
Dec-08 26 377 31.42 60 3600
Jan-09 24 336 28.00 61 3721
Feb-09 29 372 31.00 62 3844
Mar-09 31 339 28.25 63 3969
Apr-09 32 337 28.08 64 4096
May-09 34 376 31.33 65 4225
Jun-09 37 393 32.75 66 4356
Jul-09 38 411 34.25 67 4489
Aug-09 36 418 34.83 68 4624
Sep-09 30 386 32.17 69 4761
Oct-09 33 396 33.00 70 4900
Nov-09 26 375 31.25 71 5041
Dec-09 24 352 29.33 72 5184
Jan-10 24 345 28.75 73 5329
Feb-10 27 336 28.00 74 5476
Mar-10 36 381 31.75 75 5625
Apr-10 41 422 35.17 76 5776
May-10 26 280 23.33 77 5929
Jun-10 28 305 25.42 78 6084
Jul-10 26 283 23.58 79 6241
Aug-10 23 282 23.50 80 6400
Sep-10 25 317 26.42 81 6561
Oct-10 23 291 24.25 82 6724
Nov-10 20 287 23.92 83 6889
Dec-10 23 326 27.17 84 7056
Jan-11 21 307 25.58 85 7225
Feb-11 22 270 22.50 86 7396
Mar-11 28 300 25.00 87 7569
Apr-11 30 310 25.83 88 7744
May-11 28 305 25.42 89 7921
Jun-11 28 301 25.08 90 8100
Jul-11 27 296 24.67 91 8281
Aug-11 25 299 24.92 92 8464
Sep-11 24 304 25.33 93 8649
Oct-11 25 316 26.33 94 8836
Nov-11 23 328 27.33 95 9025
Dec-11 24 341 28.42 96 9216
Jan-12 23 335 27.92 97 9409
Feb-12 30 366 30.50 98 9604
Mar-12 34 354 29.50 99 9801
Apr-12 34 354 29.50 100 10000
May-12 35 370 30.83 101 10201
Jun-12 34 360 30.00 102 10404
Jul-12 33 369 30.75 103 10609
Aug-12 31 375 31.25 104 10816
Sep-12 30 385 32.08 105 11025
Oct-12 29 358 29.83 106 11236
Nov-12 28 392 32.67 107 11449
Dec-12 28 399 33.25 108 11664
Jan-13 32 446 37.17 109 11881
Feb-13 36 447 37.25 110 12100
Mar-13 41 444 37.00 111 12321
Apr-13 43 441 36.75 112 12544
May-13 40 428 35.67 113 12769
Jun-13 43 470 39.17 114 12996
Jul-13 33 375 31.25 115 13225
Aug-13 31 381 31.75 116 13456
Sep-13 31 403 33.58 117 13689
Oct-13 36 444 37.00 118 13924
Nov-13 32 446 37.17 119 14161
Dec-13 31 433 36.08 120 14400
Jan-14 33 443 36.92 121 14641
Feb-14 35 420 35.00 122 14884
Mar-14 39 405 33.75 123 15129
Apr-14 39 403 33.58 124 15376
May-14 43 451 37.58 125 15625
Jun-14 38 418 34.83 126 15876
Jul-14 35 402 33.50 127 16129
Aug-14 36 456 38.00 128 16384
Sep-14 37 470 39.17 129 16641
Oct-14 38 476 39.67 130 16900
Nov-14 31 442 36.83 131 17161
Dec-14 35 497 41.42 132 17424
Jan-15 39 515 42.92 133 17689
Feb-15 45 540 45.00 134 17956
Mar-15 46 480 40.00 135 18225
Apr-15 48 502 41.83 136 18496
May-15 47 502 41.83 137 18769
Jun-15 44 480 40.00 138 19044
Jul-15 43 506 42.17 139 19321
Aug-15 41 518 43.17 140 19600
Sep-15 35 456 38.00 141 19881
Oct-15 39 482 40.17 142 20164
Nov-15 36 504 42.00 143 20449
Dec-15 38 546 45.50 144 20736
Jan-16 39 505 42.08 145 21025
Feb-16 45 517 43.08 146 21316
Mar-16 50 532 44.33 147 21609
Apr-16 55 576 48.00 148 21904
May-16 53 571 47.58 149 22201
Jun-16 50 557 46.42 150 22500
Jul-16 54 628 52.33 151 22801
Aug-16 46 575 47.92 152 23104
Sep-16 44 558 46.50 153 23409
Oct-16 46 575 47.92 154 23716
Nov-16 40 571 47.58 155 24025
Dec-16 39 561 46.75 156 24336
Jan-17 45 578 48.17 157 24649
Feb-17 51 601 50.08 158 24964
Mar-17 61 643 53.58 159 25281
Apr-17 56 604 50.33 160 25600
May-17 57 627 52.25 161 25921
Jun-17 56 612 51.00 162 26244
Jul-17 48 553 46.08 163 26569
Aug-17 45 550 45.83 164 26896
Sep-17 50 622 51.83 165 27225
Oct-17 49 625 52.08 166 27556
Nov-17 50 718 59.83 167 27889
Dec-17 45 658 54.83 168 28224
Jan-18 48 610 50.83 169 28561
Feb-18 54 644 53.67 170 28900
Mar-18 66 680 56.67 171 29241
Apr-18 61 658 54.83 172 29584
May-18 62 680 56.67 173 29929
Jun-18 56 598 49.83 174 30276
Jul-18 52 600 50.00 175 30625
Aug-18 47 582 48.50 176 30976
Sep-18 46 584 48.67 177 31329
Oct-18 43 546 45.50 178 31684
Nov-18 44 618 51.50 179 32041
Dec-18 38 566 47.17 180 32400
Jan-19 49 628 52.33 181 32761
Feb-19 57 675 56.25 182 33124
Mar-19 68 721 60.08 183 33489
Apr-19 64 689 57.42 184 33856
May-19 56 619 51.58 185 34225
Jun-19 66 711 59.25 186 34596
Jul-19 55 636 53.00 187 34969
Aug-19 57 677 56.42 188 35344
Sep-19 56 706 58.83 189 35721
Oct-19 55 703 58.58 190 36100
Nov-19 50 700 58.33 191 36481
Dec-19 49 733 61.08 192 36864
Jan-20 59 756 63.00 193 37249
Feb-20 63 730 60.83 194 37636
Mar-20 59 623 51.92 195 38025
Apr-20 52 582 48.50 196 38416
May-20 64 704 58.67 197 38809
Jun-20 79 839 69.92 198 39204
Jul-20 85 972 81.00 199 39601
Aug-20 81 977 81.42 200 40000
Sep-20 77 971 80.92 201 40401
Oct-20 78 969 80.75 202 40804
Nov-20 61 865 72.08 203 41209
Dec-20 63 943 78.58 204 41616
Jan-21 77 993 82.75 205 42025
Feb-21 70 823 68.58 206 42436
Mar-21 83 873 72.75 207 42849
Apr-21 74 796 66.33 208 43264
May-21 65 733 61.08 209 43681
Jun-21 61 683 56.92 210 44100
Jul-21 63 712 59.33 211 44521
Aug-21 57 702 58.50 212 44944
Sep-21 65 800 66.67 213 45369

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Fundamentals Of Matrix Analysis With Applications

Authors: Edward Barry Saff, Arthur David Snider

1st Edition

111895369X, 9781118953693

More Books

Students also viewed these Mathematics questions

Question

Briefly define Galens constitutional types.

Answered: 1 week ago

Question

what does shareholder primacy mean for busienss?

Answered: 1 week ago

Question

600 lb 20 0.5 ft 30 30 5 ft

Answered: 1 week ago

Question

8. What values do you want others to associate you with?

Answered: 1 week ago