Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

fffff= elm-ks) Applying Laplace to both sides of the equaon 521.15) 51(0) 010 + 2(sX(s) 15(0)) + 1((3) = eXPK-HS) + exp( b5) Substitute 1C.

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
\f\f\f\f\f= elm-ks) Applying Laplace to both sides of the equaon 521.15) 51(0) 010 + 2(sX(s) 15(0)) + 1((3) = eXPK-HS) + exp( b5) Substitute 1C. sms) + 2mg) + m) = \"pt\"5) + expE-bs) m3 = \"(E"3) + \"PE-b5) = mils; + exptbs) n+3: 3+1? n+1? x(:) = L-1{X(s)} =Ltsinm\"m+rn:n*\"\"m = L_1{"p(_'\") @- \"L1 _ [s :1? Wm} = u[t a){u[t a) exp[-(t 5)) - (t - a) exn[-[t -b))} + u(t b)(t b) exp((t 5)] = uEt a)[1 exp([t 11)) [t a) exp[(t 110] + u(: b)(t 11) exp((: 11)) Case(]])as,b>0 1 L{u(t - (1)} = E 3m: b)] = exp(bs) Applying Laplace In both sides of the equation 1 SEATS) + 2511(5) + 3(3) = E + expEbs) apt-b5) 5(5 + 1)2 + (s + 1)2 _ _ 1_i_ 1 _ expEhs) \"n'lk 5+1 n+nJ+Liin+nz} X(s) = = utt) - exp(-t) - t exp(-t) + at: b)[t b) exp((t 5)) = 1 - exp(-t) - t exv(t) + utt b)[t b) exp((t 5)) Problem 5.5.10 Take laplace on each side of both equations. Lix'} = Alix} + 2M] {y'} = nix} - 250} Given I.C., this gives [[5 1)X(s) = 2Y(s) + 1 2XEs) (s + 2)Y(s) This gives x{)1 1 +3 1 [S '5' + 5' 2 1 + Finally 5 _ Ztexpt2t) exp(3r)) 10): 4 exp(2t) + exp(-3t) ytt) 5 \fPrnblem 5.5.11 {HIT} = '2L{x1}+ Lira} + exPP\") ME] = Lin} L132} + expter) {3213 (S) = -2X1(S) + 12(3) + allot-TS) 5232(5) = 31(5) X28) + Elli275) {132(3) = [52 + 2)X1(S)- eXP'Z-TS) (s2 + BK; (s) = X18) + arm2:5) Insert rst equation into second. {32 + HUS: + 23X1(S) rm75)) = X15) + Elli2\") (3\" + 352 + 1)X1(s) = exp(Is) (exp(-rs) + $2 + 1) exp(rs) [exp('rs) + s2 + 1) (33+3-l-2'/)(s2 +3 E'G) elm-TS) 3+ 5 3 5 2 2 (s 2W\" 2\"? x1 {0 = 131 = n(t T)_1 Using partial fracnns we nd 1 B 3 ($2 +3+2J)(52+32 Where 1 D= 5 and 32+1 _ F + H 3+ 5 3 5 _ 3+J 3(5 2 2 2 2. ( + 200+ 2f) + 2 + 2 where 1+J F: NE and 5-1 25 Then We also have {52 + 1mm = X1 (5) + exp(- Z'rs) \fL'1{I[s]} = sin net 3121 3 ram-11:1 + 2 = 3 sin :11: E EKp(-2l'} 2 sin {MEI exp[r} Prelileni 5.5.13 By applying lsplsee trensferm be given a system DE DE, we get fellewing. I'D?) = 21::(1) + t) + 1 '[ = IE} + 23(3) + 3311(3) 31111331 IN) = 23(3) + i'[s) + 31: 1 [9H 2)+ 3 1 x s s I\" 3': [3-1}[33)+ see-11:34) rm} 1 +[3 - 1] [s 3+ [3 - 1]1(3 - 3} 1"[s)- _ 1(1)} 1 (3-1][s3]+ 33(31](33) +F[)(5 - 2J+ [3 3) +(3 - 1}[s 3]+ [s- 1}3{3 - 3] We need partial freetiens fer each term in the shave DEs. xt) [3 - 2) xiig 1 1 [s1][3-3) 21+s-sll 3-2 s 211 1 32(31)(s-s}=__ Tying-131+ 13[s-3} &_ 1 + 1 3, [s1)(33) 2 31 33 1 1 1 [s 13,2[3 - 3} 4(3 1) 2(3 1)2 +43 s) \f\f\fre: = #1 l\"rt-11(3) + 2 exPE-t) Then we can have the RS. like the fellewhtg fe'n em = 113:3 + All: +Aa xp = 231:: + A1 IQ}: = 2A: Substitute inte the erig'mel equetien. 2.41 2(2111: +441] - 3.32:3 + A1: + Ac.) = r1 + 4: Then 38 15 1 A =,A =-,A = \" 2? 1 e 2 3 SetheG.S.ie 1 15 35 _ _ _ E__ _ xgelexp(3t)+egexp[ t}+3t 9 \"-2? r 2 15 I: = 3E1 unt) - E1 apt-t) + gt - 3 Suhatituteinte _1'1rI2tl 1'1 2 Weeenhave 2 11 43 _ _ _ __3 _ __ IlElp(3t) EEEIPE t} 3t +9: 2? St:- the selutien is 2 11 43 _ _ _ __1 _ __ xlelexpt] C2EIP[ t] 3: +9: 2? 1 15 35 _ _ _ E__ _ xgelexp(3t)+egexp[ t}+3t 9 \"-2? Prehlem 1.15 434 I = I\" = y' = 9x+5x' x"x'+9x= r25r+9= r1=r1=3 Hence: In) = [A + 3:) expt} 3.1:) = [3A + H + 33:] expt} Prnhlem 4.3.1 Jr." = 1' .. 2]! [1) [1W = I -* 1* (21' Pm Eq-El) x = 1:" + J? 1" = y" + 11' Hugging this intn Eq-[l) 1' = Jr: -- 2}! 1'\" H" =1r'+.v\"2.v J?\" + r = TheC-Eqis r1 + 1 = :1 TL: = ii t] = E1 cust+ E2 sint Puttls back, and t] = (E; - E1] sin: + [1 + 2} ms: Hugging in the 1.11, we have 1=+ 2= [2'1 = 2 [E1 = 1 Thus t) = trust .. 35in: [t]! = Ems: +- sin: Prehlem 5.5.3 Take lsplsee run each side ef twe DEs, we have HI" = -4.E{I} + L{sin t} m = 4m} ace: let HI} = Js). We lmew that L{x\"} = s31 (s) - x[)s I'm) Plugging ihte the rst DE we get 2 _ = s IEs) HE'S IT\") 43(3) + 32 + 1 This gives m) = W [s2 + 4-)[33 + 1) Thus, the (3.5. ef t) is t) = L'1{I[s}}. Similarly, fer _v, let Lbs] = 113]}. This gives L{_v\"} = sts) ytms - 3:10) The seeehd DE can he w1itten ss szs} Jr[)s 3.9m] = 43(3) - HHS) This gives 4H3) + 229303 + .v'ti s2 + B Hugging 3(3) ihte the shave equetieh, we can get his} in terms efs, then the GS. e1\" _v[t) is: t] = L'1[F[s)] rm = Prehlem 5.5.4 Take lsplsee e11 each side at\" the equetien, we have L{x'"} + L{:t'\"} L{x'} = LetL{x} = JETS]. then Hf} = 3.151(3) - rm} = sX[s) PrnhlI- 5.5.tl Take laplace m1 each side (11' the: aquan, we. have L-[xm] + L[:r:\"} L{x'} = Letx} = I [3). than L{x'} = 3.1" [3) ... 1\"\" = 31$) \f\f

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Linear Algebra A Modern Introduction

Authors: David Poole

4th edition

1285463242, 978-1285982830, 1285982835, 978-1285463247

More Books

Students also viewed these Mathematics questions