Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Finance &Investments Analysis Homework help Attached files are the questions and files needed ECO366 Investments Analysis Problem Set 3 This problem set will require you

image text in transcribed

Finance &Investments Analysis Homework help

Attached files are the questions and files needed

image text in transcribed ECO366 Investments Analysis Problem Set 3 This problem set will require you to calculate and plot Efficient Frontier based on your data; the due date is Friday, November 5. Please, submit via Blackboard. Part 1. (a) Intro1 Harry Markowitz (1952, 1959) developed his portfolio-selection technique, which came to be called modern portfolio theory (MPT). Prior to Markowitz's work, security-selection models focused primarily on the returns generated by investment opportunities. Standard investment advice was to identify those securities that offered the best opportunities for gain with the least risk and then construct a portfolio from these. Following this advice, an investor might conclude that railroad stocks all offered good risk-reward characteristics and compile a portfolio entirely from these. The Markowitz theory retained the emphasis on return; but it elevated risk to a coequal level of importance, and the concept of portfolio risk was born. Whereas risk has been considered an important factor and variance an accepted way of measuring risk, Markowitz was the first to clearly and rigorously show how the variance of a portfolio can be reduced through the impact of diversification, he proposed that investors focus on selecting portfolios based on their overall risk-reward characteristics instead of merely compiling portfolios from securities that each individually have attractive risk-reward characteristics. A Markowitz portfolio model is one where no added diversification can lower the portfolio's risk for a given return expectation (alternately, no additional expected return can be gained without increasing the risk of the portfolio). The Markowitz Efficient Frontier is the set of all portfolios of which expected returns reach the maximum given a certain level of risk. The Markowitz model is based on several assumptions concerning the behavior of investors and financial markets: 1. A probability distribution of possible returns over some holding period can be estimated by investors. 2. Investors have single-period utility functions in which they maximize utility within the framework of diminishing marginal utility of wealth. 3. Variability about the possible values of return is used by investors to measure risk. 4. Investors care only about the means and variance of the returns of their portfolios over a particular period. 5. Expected return and risk as used by investors are measured by the first two moments of the probability distribution of returns-expected value and variance. 6. Return is desirable; risk is to be avoided1. 7. Financial markets are frictionless. Throughout this homework, investors are assumed to measure the level of return by computing the expected value of the distribution, using the probability distribution of expected returns for a portfolio. Risk is assumed to be measurable by the variability around the expected value of the probability distribution of returns. The most accepted measures of this variability are the variance and standard deviation. Given any set of risky assets and a set of weights that describe how the portfolio investment is split, the general formulas of expected return for n assets is: n E (rP ) wi E ri (X.1) i 1 where: n w = 1.0; n = the number of securities; wi = the proportion of the funds invested in security i; ri , rP = the return on ith security and portfolio p; and i 1 i By W.P Chen, H. Chung, K. Ho, T. Hsu, a chapter from a Handbook of Quantitative Finance and Risk Management. 1 E = the expectation of the variable in the parentheses. The return computation is nothing more than finding the weighted average return of the securities included in the portfolio. The variance of a single security is the expected value of the sum of the squared deviations from the mean, and the standard deviation is the square root of the variance. The variance of a portfolio combination of securities is equal to the weighted average covariance2 of the returns on its individual securities: Var rp p2 wi w j Cov ri , rj n n (X.2) i 1 j 1 Covariance can also be expressed in terms of the correlation coefficient as follows: Cov ri , rj ij i j ij (X.3) where ij = correlation coefficient between the rates of return on security i, ri , and the rates of return on security j, r j , and i , and j represent standard deviations of ri and rj respectively. Therefore: Var rp wi w j ij i j n n (X.4) i 1 j 1 The concept of Markowitz efficient frontier Every possible asset combination can be plotted in risk-return space, and the collection of all such possible portfolios defines a region in this space. The line along the upper edge of this region is known as the efficient frontier. Combinations along this line represent portfolios (explicitly excluding the risk-free alternative) for which there is lowest risk for a given level of return. Conversely, for a given amount of risk, the portfolio lying on the efficient frontier represents the combination offering the best possible return. Mathematically the efficient frontier is the intersection of the set of portfolios with minimum variance and the set of portfolios with maximum return. Hence, to find it you could eitehr minimize level of risk given a certail level of return, or maximize level of return given certain level (budget) of risk. We will use the second approach. (b) Execution in Excel First, we need to calculate expected return, standard deviation, and covariance matrix. The expected return and standard deviation can be calculated by applying the Excel STDEV.S and AVERAGE functions to the historic monthly percentage returns data. The Variance-Covariance matrix can be obtained by using matrix multiplication in Excel: first, you need to find excess returns, or demeaned returns - to do so, for each series (columns) of returns you will create a new series (column) by subtracting mean (respective average that you have calculated) from each cell of the column. Hence, if you had five columns of raw returns, you will get new five columns of excess returns. Next, you highlight an n by n array (if you had 5 securities, it will be 5 by 5 square of cells) and type =MMULT(TRANSPOSE(Your_Exess_returns),(Your_Exess_returns)/(number_of_observations-1)) and press CTRL+Shift+ENTER. It should fill out your Var-Covar matrix space with numbers. Create a row of weights, randomly selected, by typing in a first cell of weights array =NORMINV(RAND(), 0, 1). Drag it by the right lower corner to spread the formula across all the cells of the array except the last one (to make sure that they all equal to 1). For your last security weight, you apply =1-SUM(previous n-1 weights). To check for yourself that your weights sum up to 1, type in the cell next to your row of weights =SUM(your array of weights) and it always should be equal to 1. Type 1 in the cell right next to have a check for your optimization problem. Calculate expected return for the portfolio by typing =SUMPROD(weights, expected_returns_of_securities) Calculate standard deviation of your portfolio returns by typing High covariance indicates that an increase in one stock's return is likely to correspond to an increase in the other. A low covariance means the return rates are relatively independent and a negative covariance means that an increase in one stock's return is likely to correspond to a decrease in the other. 2 =sqrt(MMULT(weights, MMULT(Var-Covar_matrix, TRANSPOSE(weights)))), and press CTRL+Shift+ENTER. To install Solver, go to File, choose Options, choose Add-ins, choose Solver Add-in, and press GO. Check a box right next to Solver Add-in and press Ok. Now you should be able to find Solver in DATA (under Analysis). To change randomly selected weight you can press F9. Your values of expected return and standard deviation should change respectively. Save 20 pairs of them - these are your expected returns and measures or risk for 20 portfolios that are created with weights randomly selected from standard normal distribution. These portfolios are not necessarily optimal. But we will use level of their volatility (standard deviation) to find maximum possible return by changing the weights. Portfolios formed by these weights will be on the efficient frontier. To find these portfolios, use Solver (as specified in Excel practice sheet) and report the optimal values of returns. Finally, plot your optimal and randomly generated returns with respect to the standard deviation (volatility). If you use line graphs, your lines will not cross! The upper line is your Efficient Frontier. \fReturns 196301 196302 196303 196304 196305 196306 196307 196308 196309 196310 196311 196312 196401 196402 196403 196404 196405 196406 196407 196408 196409 196410 196411 196412 196501 196502 196503 196504 196505 196506 196507 196508 196509 196510 196511 196512 196601 196602 196603 196604 196605 196606 196607 196608 196609 196610 196611 196612 1 13.02 -3.25 4.98 4.8 3.39 3.77 0.85 3.8 -2.7 1.36 -3.11 -2.94 3.95 3.14 0.63 -1.7 -1.4 1.92 0.85 1.27 4.69 1.7 -0.16 -1.51 8.56 1.58 1.4 3.38 -0.6 -12.4 2.44 2.91 3.08 5.97 3.59 6.41 5.88 6.49 0.43 10.51 -12.3 -0.68 -2 -11.98 -1.88 -7.92 8.44 4.1 2 11.44 -3.49 -1.47 1.5 1.68 -1.17 0.24 2.15 0.26 -0.63 -4.32 -0.55 3.17 2.66 1.11 2.58 -1.17 0.63 3.88 -1.91 4.03 0.37 -0.41 -1.4 5.83 1.07 2.72 4.86 -2.32 -10.76 3.74 5.42 6.18 8.65 6.28 7.23 6.08 6.16 -0.85 4.68 -13.06 -0.52 -1.94 -10.59 -2.08 -4.77 3.68 2.83 3 9.39 -0.74 -0.15 1.88 2.72 -1.35 0.56 1.32 -1.09 1.24 -1.6 -0.9 4.11 2.26 2.38 -0.41 0.47 1.28 3.27 -1.78 5.91 2.65 0.72 -2.29 6.08 2.47 1.25 5.16 -1.55 -9.53 3.2 5.38 1.62 6.74 3.04 2.66 8.45 1.87 -1.7 5.78 -10.87 1.28 -2.41 -9.88 -1.73 -4.6 4.67 2.42 4 10.96 -0.83 1.24 3.61 4.12 -2.46 -0.02 2.29 -1.59 0.05 -1 -1.75 4.22 0.3 3.64 -1 0.45 0.77 2.64 -0.92 2.73 2.21 0.75 -2.62 7.22 3.04 2.33 4.07 -0.41 -8 2.29 3.8 3.94 5.63 8.09 3.87 9.58 4.64 -0.84 6.93 -10.76 1.54 -0.02 -11.07 -1.89 -1.16 2.46 0.85 Excess Returns 5 1 2 3 4 11.13 12.30737 10.21672 8.121895 9.517925 2.78 -3.962631 -4.713284 -2.008105 -2.272075 2.61 4.267369 -2.693284 -1.418105 -0.202075 2.78 4.087369 0.276716 0.611895 2.167925 7.92 2.677369 0.456716 1.451895 2.677925 -1.09 3.057369 -2.393284 -2.618105 -3.902075 -1.22 0.137369 -0.983284 -0.708105 -1.462075 4.73 3.087369 0.926716 0.051895 0.847925 -0.38 -3.412631 -0.963284 -2.358105 -3.032075 2.37 0.647369 -1.853284 -0.028105 -1.392075 -1.11 -3.822631 -5.543284 -2.868105 -2.442075 -0.97 -3.652631 -1.773284 -2.168105 -3.192075 4.87 3.237369 1.946716 2.841895 2.777925 4.49 2.427369 1.436716 0.991895 -1.142075 2.71 -0.082631 -0.113284 1.111895 2.197925 -0.9 -2.412631 1.356716 -1.678105 -2.442075 1.47 -2.112631 -2.393284 -0.798105 -0.992075 1.09 1.207369 -0.593284 0.011895 -0.672075 4.71 0.137369 2.656716 2.001895 1.197925 -0.49 0.557369 -3.133284 -3.048105 -2.362075 3.98 3.977369 2.806716 4.641895 1.287925 3.36 0.987369 -0.853284 1.381895 0.767925 0.52 -0.872631 -1.633284 -0.548105 -0.692075 -1.84 -2.222631 -2.623284 -3.558105 -4.062075 8.77 7.847369 4.606716 4.811895 5.777925 3.73 0.867369 -0.153284 1.201895 1.597925 3.25 0.687369 1.496716 -0.018105 0.887925 4.6 2.667369 3.636716 3.891895 2.627925 -1.27 -1.312631 -3.543284 -2.818105 -1.852075 -9.57 -13.11263 -11.98328 -10.7981 -9.442075 4.33 1.727369 2.516716 1.931895 0.847925 3.93 2.197369 4.196716 4.111895 2.357925 3.14 2.367369 4.956716 0.351895 2.497925 9.04 5.257369 7.426716 5.471895 4.187925 6.64 2.877369 5.056716 1.771895 6.647925 4.97 5.697369 6.006716 1.391895 2.427925 9.24 5.167369 4.856716 7.181895 8.137925 6.12 5.777369 4.936716 0.601895 3.197925 -1.1 -0.282631 -2.073284 -2.968105 -2.282075 3.89 9.797369 3.456716 4.511895 5.487925 -11.79 -13.01263 -14.28328 -12.1381 -12.20208 0.37 -1.392631 -1.743284 0.011895 0.097925 -1.03 -2.712631 -3.163284 -3.678105 -1.462075 -10.38 -12.69263 -11.81328 -11.1481 -12.51208 -1.24 -2.592631 -3.303284 -2.998105 -3.332075 -1.39 -8.632631 -5.993284 -5.868105 -2.602075 3.56 7.727369 2.456716 3.401895 1.017925 0.2 3.387369 1.606716 1.151895 -0.592075 196701 196702 196703 196704 196705 196706 196707 196708 196709 196710 196711 196712 196801 196802 196803 196804 196805 196806 196807 196808 196809 196810 196811 196812 196901 196902 196903 196904 196905 196906 196907 196908 196909 196910 196911 196912 197001 197002 197003 197004 197005 197006 197007 197008 197009 197010 197011 197012 197101 197102 20.42 7.48 7.2 6.92 0.36 15.79 9.32 -0.71 11.76 1.8 -1.1 13.13 3.14 -10.1 -1.52 21.57 10.75 -1.08 -4.9 4.54 7.16 -2.05 6.75 4.07 -0.53 -12.38 3.13 1.05 1.03 -14.64 -13.01 5.18 -3.01 13.98 -8.49 -8.18 -4.86 2.26 -6.51 -24.15 -10.19 -12.11 4.82 5.6 22.15 -11.13 -4.72 6.98 15.27 8 20.57 4.89 6.17 4.04 0.4 9.37 10.01 0.64 10.17 -3.98 3.79 10.35 2.57 -7.09 -0.01 17.49 12.58 0.1 -4.58 5.79 8.48 -0.03 7.7 2.34 -2.12 -10.73 2.47 -0.49 0.81 -12.92 -11.47 4.76 -5.02 12.63 -7.12 -7.45 -3.28 3.4 -5.24 -18.74 -10.17 -8.66 5.6 6.45 16.54 -7.45 -2.12 7.32 13.78 7.47 19.27 5.58 4.95 3.54 -0.73 12.59 9.56 0.2 8.28 -1.68 -1.15 8.55 2.9 -5.44 -0.34 16.19 10.78 1.64 -3.73 4.86 6.93 1.4 6.5 0.69 -1.93 -9.05 3.56 1 1.01 -13.46 -10.84 4.95 -5.07 9.25 -6.15 -6.04 -3.88 4.09 -2.52 -14.96 -9.16 -7.3 5.11 7.14 15.64 -11.29 -2.09 10.44 16.31 6.1 20.61 4.51 7.53 4.04 -0.89 12.33 7.65 0.23 7.66 -1.63 -1.3 9.67 3.37 -6.95 -2.02 16.49 11.89 1.77 -1.51 4.1 5.94 0.65 6.59 -0.25 -1.31 -8.67 4.16 2.49 0.79 -12.59 -10.46 3.29 -2.21 7.94 -6.04 -8.22 -2.47 3.18 0.31 -12.98 -8.12 -8.28 6.46 6.77 11.59 -6.52 0.38 11.58 14.12 3.32 17.44 19.70737 19.34672 18.0019 19.16792 5.9 6.767369 3.666716 4.311895 3.067925 5.24 6.487369 4.946716 3.681895 6.087925 3.56 6.207369 2.816716 2.271895 2.597925 -0.71 -0.352631 -0.823284 -1.998105 -2.332075 10.05 15.07737 8.146716 11.3219 10.88792 11.85 8.607369 8.786716 8.291895 6.207925 2.09 -1.422631 -0.583284 -1.068105 -1.212075 4.86 11.04737 8.946716 7.011895 6.217925 -2.66 1.087369 -5.203284 -2.948105 -3.072075 -1.1 -1.812631 2.566716 -2.418105 -2.742075 10.13 12.41737 9.126716 7.281895 8.227925 6 2.427369 1.346716 1.631895 1.927925 -5.58 -10.81263 -8.313284 -6.708105 -8.392075 -0.08 -2.232631 -1.233284 -1.608105 -3.462075 15.77 20.85737 16.26672 14.9219 15.04792 11.74 10.03737 11.35672 9.511895 10.44792 0.19 -1.792631 -1.123284 0.371895 0.327925 0.81 -5.612631 -5.803284 -4.998105 -2.952075 4.83 3.827369 4.566716 3.591895 2.657925 6.32 6.447369 7.256716 5.661895 4.497925 1.66 -2.762631 -1.253284 0.131895 -0.792075 6.98 6.037369 6.476716 5.231895 5.147925 0.54 3.357369 1.116716 -0.578105 -1.692075 -1.34 -1.242631 -3.343284 -3.198105 -2.752075 -8.72 -13.09263 -11.95328 -10.3181 -10.11208 2.39 2.417369 1.246716 2.291895 2.717925 0.11 0.337369 -1.713284 -0.268105 1.047925 0.45 0.317369 -0.413284 -0.258105 -0.652075 -12.32 -15.35263 -14.14328 -14.7281 -14.03208 -7.92 -13.72263 -12.69328 -12.1081 -11.90208 2.77 4.467369 3.536716 3.681895 1.847925 -3.44 -3.722631 -6.243284 -6.338105 -3.652075 6.33 13.26737 11.40672 7.981895 6.497925 -7.39 -9.202631 -8.343284 -7.418105 -7.482075 -8.65 -8.892631 -8.673284 -7.308105 -9.662075 0.11 -5.572631 -4.503284 -5.148105 -3.912075 4.29 1.547369 2.176716 2.821895 1.737925 -1.29 -7.222631 -6.463284 -3.788105 -1.132075 -12.02 -24.86263 -19.96328 -16.2281 -14.42208 -10.45 -10.90263 -11.39328 -10.4281 -9.562075 -6.03 -12.82263 -9.883284 -8.568105 -9.722075 3.83 4.107369 4.376716 3.841895 5.017925 6.33 4.887369 5.226716 5.871895 5.327925 11.6 21.43737 15.31672 14.3719 10.14792 -4.99 -11.84263 -8.673284 -12.5581 -7.962075 0.21 -5.432631 -3.343284 -3.358105 -1.062075 10.74 6.267369 6.096716 9.171895 10.13792 15.93 14.55737 12.55672 15.0419 12.67792 4.06 7.287369 6.246716 4.831895 1.877925 197103 197104 197105 197106 197107 197108 197109 197110 197111 197112 197201 197202 197203 197204 197205 197206 197207 197208 197209 197210 197211 197212 197301 197302 197303 197304 197305 197306 197307 197308 197309 197310 197311 197312 197401 197402 197403 197404 197405 197406 197407 197408 197409 197410 197411 197412 197501 197502 197503 197504 8.34 0.78 -6.6 -0.42 -8.62 3.29 1.21 -7.86 -3.27 14.49 13.22 3.03 2.96 -1.23 -1.57 -4.21 -7.19 -1.62 -4.85 -3.45 -0.29 -1.77 -7.96 -14.07 -7.04 -11.85 -11.46 -5.13 18.94 -5.38 11.67 -2.93 -24.87 -4.02 10.24 -0.33 0.22 -4.71 -8.35 -3.42 -8.7 -9.49 -13.57 15.5 -6.33 -7.4 26.43 7.53 9.13 7.07 4.63 3.26 -5.1 -3.59 -8.06 4.38 2.09 -6.78 -5.79 14.24 13.38 5.48 0.1 0.19 -1.9 -4.67 -4.89 -2.64 -4.84 -3.28 3.94 -2.47 -4.99 -8.66 -4.03 -9.84 -10.8 -3.97 16.07 -6.99 10.87 0.38 -21.68 -4.82 14.29 -1.33 -0.92 -5.94 -7.55 -3.23 -5.62 -8.17 -8.34 7.13 -5.55 -8.14 29.54 5.42 10.72 6.32 7.86 2.24 -7.34 -2.29 -7.25 2.81 -0.12 -7.09 -3.76 10.74 11.86 4.16 -1.93 -1.07 -4.14 -3.32 -4.24 0.61 -4.81 -2.89 4.78 -3.35 -2.8 -8.51 -2.66 -6.7 -9.3 -4.38 12 -5.77 6.82 0.84 -18.94 -3.97 14.87 -0.23 0.5 -5.12 -8.11 -2.23 -5.13 -7.63 -6.77 6.99 -5.02 -7.27 28.13 3.15 9.09 4.23 6.49 2.74 -4.96 -1.24 -6.04 4.56 -0.63 -4.45 -4.39 11.78 10.84 4.22 -1.57 1.3 -2.26 -3.15 -3.34 -0.03 -3.74 -2.12 6 -2.61 -3.55 -8.13 -0.99 -6.08 -7.73 -3.07 13.57 -5.94 7.76 0.43 -16.71 -2.85 12.76 -0.11 1.56 -5.42 -6.79 -2.18 -4.71 -7.49 -6.93 7.79 -5.2 -7.5 27.78 3.47 7.92 2.82 5.13 7.627369 3.406716 6.591895 5.047925 1.86 0.067369 2.036716 0.971895 1.297925 -6.57 -7.312631 -6.323284 -8.608105 -6.402075 -2.16 -1.132631 -4.813284 -3.558105 -2.682075 -5.91 -9.332631 -9.283284 -8.518105 -7.482075 5.65 2.577369 3.156716 1.541895 3.117925 -2.38 0.497369 0.866716 -1.388105 -2.072075 -7.27 -8.572631 -8.003284 -8.358105 -5.892075 -5.6 -3.982631 -7.013284 -5.028105 -5.832075 13.39 13.77737 13.01672 9.471895 10.33792 14.8 12.50737 12.15672 10.5919 9.397925 3.55 2.317369 4.256716 2.891895 2.777925 -0.41 2.247369 -1.123284 -3.198105 -3.012075 1.07 -1.942631 -1.033284 -2.338105 -0.142075 -2.27 -2.282631 -3.123284 -5.408105 -3.702075 -3.77 -4.922631 -5.893284 -4.588105 -4.592075 -2.8 -7.902631 -6.113284 -5.508105 -4.782075 2.25 -2.332631 -3.863284 -0.658105 -1.472075 -4.21 -5.562631 -6.063284 -6.078105 -5.182075 -1.94 -4.162631 -4.503284 -4.158105 -3.562075 6.01 -1.002631 2.716716 3.511895 4.557925 -1.5 -2.482631 -3.693284 -4.618105 -4.052075 -1.4 -8.672631 -6.213284 -4.068105 -4.992075 -6.02 -14.78263 -9.883284 -9.778105 -9.572075 -1.81 -7.752631 -5.253284 -3.928105 -2.432075 -5.41 -12.56263 -11.06328 -7.968105 -7.522075 -8.27 -12.17263 -12.02328 -10.5681 -9.172075 -2.34 -5.842631 -5.193284 -5.648105 -4.512075 10.38 18.22737 14.84672 10.7319 12.12792 -4.5 -6.092631 -8.213284 -7.038105 -7.382075 6.94 10.95737 9.646716 5.551895 6.317925 1.31 -3.642631 -0.843284 -0.428105 -1.012075 -18.05 -25.58263 -22.90328 -20.2081 -18.15208 -4.14 -4.732631 -6.043284 -5.238105 -4.292075 18.9 9.527369 13.06672 13.6019 11.31792 1.09 -1.042631 -2.553284 -1.498105 -1.552075 1.9 -0.492631 -2.143284 -0.768105 0.117925 -4.19 -5.422631 -7.163284 -6.388105 -6.862075 -6.19 -9.062631 -8.773284 -9.378105 -8.232075 -1.53 -4.132631 -4.453284 -3.498105 -3.622075 -3.83 -9.412631 -6.843284 -6.398105 -6.152075 -6.91 -10.20263 -9.393284 -8.898105 -8.932075 -8.42 -14.28263 -9.563284 -8.038105 -8.372075 9.67 14.78737 5.906716 5.721895 6.347925 -6.67 -7.042631 -6.773284 -6.288105 -6.642075 -9.16 -8.112631 -9.363284 -8.538105 -8.942075 33.27 25.71737 28.31672 26.8619 26.33792 4.92 6.817369 4.196716 1.881895 2.027925 9.76 8.417369 9.496716 7.821895 6.477925 3.06 6.357369 5.096716 2.961895 1.377925 197505 197506 197507 197508 197509 197510 197511 197512 197601 197602 197603 197604 197605 197606 197607 197608 197609 197610 197611 197612 197701 197702 197703 197704 197705 197706 197707 197708 197709 197710 197711 197712 197801 197802 197803 197804 197805 197806 197807 197808 197809 197810 197811 197812 197901 197902 197903 197904 197905 197906 11.98 5.95 -1.51 -7.03 -5.33 1.49 0.09 -0.92 15.86 9.83 3.55 -1.45 -1.82 4.18 -1.14 -4.33 2.22 -2.78 5.73 10.84 2.87 -0.47 0.07 1.23 -1.77 5.79 1.22 1.15 2.26 -4.54 9.35 4.58 -1.19 3.07 8.09 10.31 8.51 0.89 6.8 9.81 -1.07 -26.71 8.74 3.49 10.02 -2.94 12.09 3.16 -2.72 6.04 11.06 7.75 0.24 -6.42 -2.4 1.41 2.03 -1.33 16.93 7.45 2.27 -0.79 -1.69 2.26 -1.83 -1.54 2.01 -1.48 3.24 9.45 4.35 -0.34 0.24 0.23 -0.26 6.48 0.83 -0.3 2.29 -2.61 8.6 3.52 -3.29 3.16 7.37 8.71 6.37 0.96 5.96 9.53 0.31 -23.29 7.39 3.27 9.94 -3.46 9.56 2.73 -0.83 5.57 8.49 7.49 -1.79 -4.93 -3.29 2.74 1.98 -1.08 21.37 10.36 2.08 -2.7 -1.52 2.13 0.77 -1.18 1.03 -1.58 1.92 9.55 2.67 -0.47 1.49 1.82 0.46 7.04 1.13 -0.51 0.82 -2.24 8.37 2.62 -1.48 3.95 8.1 8.39 8.75 -0.06 5.99 8.44 -1.84 -21.85 6.73 2.35 8.39 -2.57 7.89 2.19 -1.77 5.27 7.75 8.85 -0.21 -5.34 -3.03 2.74 2.48 -1.02 22.41 12.38 0.75 -1.19 -3.53 3.11 -0.3 -1.43 2.18 -1.53 2.56 10.94 4.55 -0.43 1.43 2.65 0.18 5.64 0.6 -1.37 1.93 -1.33 6.75 2.77 -1.1 3.24 6.82 7.33 6.38 0.09 4.9 7.97 -0.16 -18.66 4.43 1.05 10.62 -2.86 7.25 3.09 4.29 4.65 6.65 11.26737 9.836716 7.221895 6.307925 7.96 5.237369 6.526716 6.221895 7.407925 -0.64 -2.222631 -0.983284 -3.058105 -1.652075 -7.66 -7.742631 -7.643284 -6.198105 -6.782075 -3.9 -6.042631 -3.623284 -4.558105 -4.472075 0.96 0.777369 0.186716 1.471895 1.297925 3.65 -0.622631 0.806716 0.711895 1.037925 -1.38 -1.632631 -2.553284 -2.348105 -2.462075 26.88 15.14737 15.70672 20.1019 20.96792 15.94 9.117369 6.226716 9.091895 10.93792 1.63 2.837369 1.046716 0.811895 -0.692075 -1.66 -2.162631 -2.013284 -3.968105 -2.632075 -4.84 -2.532631 -2.913284 -2.788105 -4.972075 2.03 3.467369 1.036716 0.861895 1.667925 1.12 -1.852631 -3.053284 -0.498105 -1.742075 -1.56 -5.042631 -2.763284 -2.448105 -2.872075 1.94 1.507369 0.786716 -0.238105 0.737925 -2.35 -3.492631 -2.703284 -2.848105 -2.972075 2.81 5.017369 2.016716 0.651895 1.117925 10.05 10.12737 8.226716 8.281895 9.497925 5.76 2.157369 3.126716 1.401895 3.107925 0.42 -1.182631 -1.563284 -1.738105 -1.872075 1.32 -0.642631 -0.983284 0.221895 -0.012075 2.54 0.517369 -0.993284 0.551895 1.207925 1.32 -2.482631 -1.483284 -0.808105 -1.262075 7.27 5.077369 5.256716 5.771895 4.197925 1.19 0.507369 -0.393284 -0.138105 -0.842075 -1.66 0.437369 -1.523284 -1.778105 -2.812075 1.35 1.547369 1.066716 -0.448105 0.487925 -2.12 -5.252631 -3.833284 -3.508105 -2.772075 9 8.637369 7.376716 7.101895 5.307925 1.73 3.867369 2.296716 1.351895 1.327925 0.2 -1.902631 -4.513284 -2.748105 -2.542075 3.56 2.357369 1.936716 2.681895 1.797925 8.21 7.377369 6.146716 6.831895 5.377925 8.41 9.597369 7.486716 7.121895 5.887925 8.04 7.797369 5.146716 7.481895 4.937925 0.31 0.177369 -0.263284 -1.328105 -1.352075 4.76 6.087369 4.736716 4.721895 3.457925 10.21 9.097369 8.306716 7.171895 6.527925 0.21 -1.782631 -0.913284 -3.108105 -1.602075 -21.4 -27.42263 -24.51328 -23.1181 -20.10208 4.27 8.027369 6.166716 5.461895 2.987925 0.72 2.777369 2.046716 1.081895 -0.392075 11.81 9.307369 8.716716 7.121895 9.177925 -1.4 -3.652631 -4.683284 -3.838105 -4.302075 8.48 11.37737 8.336716 6.621895 5.807925 3.41 2.447369 1.506716 0.921895 1.647925 -1.14 -3.432631 -2.053284 -3.038105 2.847925 5.39 5.327369 4.346716 4.001895 3.207925 197907 197908 197909 197910 197911 197912 198001 198002 198003 198004 198005 198006 198007 198008 198009 198010 198011 198012 198101 198102 198103 198104 198105 198106 198107 198108 198109 198110 198111 198112 198201 198202 198203 198204 198205 198206 198207 198208 198209 198210 198211 198212 198301 198302 198303 198304 198305 198306 198307 198308 2.27 8.85 -0.08 -11.03 11.09 11.5 12.89 0.57 -22.14 6.32 7.1 4.95 12.19 11.44 6.58 7.61 16.18 -6.32 -4.52 -3.34 7.31 3.08 5 -7.13 -4.52 -12.76 -13.52 10.44 -1.22 -4 -2.97 -7.94 -1.91 6.46 -3.14 -4.43 -3.84 4.88 2.25 17.68 9.12 2.55 13.54 3.14 2.8 7.33 11.99 4.11 -6.09 -6.05 2.94 8.98 -0.26 -9.88 8.49 8.3 10.36 -0.26 -19.28 6.48 6.42 3.43 12.63 8.95 2.86 5.59 6.28 -5.6 -0.38 0.06 9.5 4.75 5.03 -0.46 -3.44 -8.59 -8.38 8.13 2.35 -2.12 -0.55 -4.09 -0.37 6.25 -1.67 -3.02 -2.53 7.04 2.58 13.6 10.32 2.31 8.53 4.65 5.69 7.37 10.28 6.88 -2.12 -3.96 2.41 6.39 -1.63 -11.21 6.33 5.83 8.83 -2.13 -17.45 6.67 6.75 4.05 10.4 7.3 2.57 4.27 5.96 -3.66 1.85 1.13 8.62 3.64 4.33 1.38 -2.86 -7.29 -7.46 8.29 3.76 -0.56 -1.81 -2.93 -1.26 5.1 -0.01 -2.54 0.33 6.85 5.74 13.23 11.69 1.98 8.86 8.07 6.64 8.72 8.35 3.81 -1.02 -2.33 3.12 7.12 -0.61 -9.51 5.1 6.65 8.65 -2.22 -15.5 5.11 6.48 4.28 8.46 7 1.47 3.63 0.73 -2.68 1.92 2.14 9.17 4.78 2.67 2.75 -2.16 -5.7 -6.49 7.01 2.79 -0.4 -1.43 -2.73 -0.27 5.02 -0.84 -1.2 -0.79 5.06 3.85 12.86 10.36 2.29 9.04 7.5 4.5 9.51 8.54 2.91 0.86 -3.56 2.21 1.557369 1.716716 1.141895 1.677925 8.03 8.137369 7.756716 5.121895 5.677925 -0.95 -0.792631 -1.483284 -2.898105 -2.052075 -11.49 -11.74263 -11.10328 -12.4781 -10.95208 6.41 10.37737 7.266716 5.061895 3.657925 5.23 10.78737 7.076716 4.561895 5.207925 10.85 12.17737 9.136716 7.561895 7.207925 -2.06 -0.142631 -1.483284 -3.398105 -3.662075 -17.58 -22.85263 -20.50328 -18.7181 -16.94208 6.11 5.607369 5.256716 5.401895 3.667925 7.76 6.387369 5.196716 5.481895 5.037925 5.36 4.237369 2.206716 2.781895 2.837925 9.03 11.47737 11.40672 9.131895 7.017925 5.15 10.72737 7.726716 6.031895 5.557925 2.95 5.867369 1.636716 1.301895 0.027925 2.2 6.897369 4.366716 3.001895 2.187925 1.72 15.46737 5.056716 4.691895 -0.712075 -3.5 -7.032631 -6.823284 -4.928105 -4.122075 3.22 -5.232631 -1.603284 0.581895 0.477925 2.47 -4.052631 -1.163284 -0.138105 0.697925 7.31 6.597369 8.276716 7.351895 7.727925 5.53 2.367369 3.526716 2.371895 3.337925 2.71 4.287369 3.806716 3.061895 1.227925 1.12 -7.842631 -1.683284 0.111895 1.307925 -2.31 -5.232631 -4.663284 -4.128105 -3.602075 -4.97 -13.47263 -9.813284 -8.558105 -7.142075 -6.31 -14.23263 -9.603284 -8.728105 -7.932075 4.96 9.727369 6.906716 7.021895 5.567925 4.05 -1.932631 1.126716 2.491895 1.347925 -1.15 -4.712631 -3.343284 -1.828105 -1.842075 -0.27 -3.682631 -1.773284 -3.078105 -2.872075 -0.91 -8.652631 -5.313284 -4.198105 -4.172075 0.13 -2.622631 -1.593284 -2.528105 -1.712075 4.51 5.747369 5.026716 3.831895 3.577925 -0.71 -3.852631 -2.893284 -1.278105 -2.282075 -1.24 -5.142631 -4.243284 -3.808105 -2.642075 -0.43 -4.552631 -3.753284 -0.938105 -2.232075 5.66 4.167369 5.816716 5.581895 3.617925 4.35 1.537369 1.356716 4.471895 2.407925 11.64 16.96737 12.37672 11.9619 11.41792 10.48 8.407369 9.096716 10.4219 8.917925 2.41 1.837369 1.086716 0.711895 0.847925 7.1 12.82737 7.306716 7.591895 7.597925 8.94 2.427369 3.426716 6.801895 6.057925 7.55 2.087369 4.466716 5.371895 3.057925 9.04 6.617369 6.146716 7.451895 8.067925 7.91 11.27737 9.056716 7.081895 7.097925 4.27 3.397369 5.656716 2.541895 1.467925 0.73 -6.802631 -3.343284 -2.288105 -0.582075 -1.18 -6.762631 -5.183284 -3.598105 -5.002075 198309 198310 198311 198312 198401 198402 198403 198404 198405 198406 198407 198408 198409 198410 198411 198412 198501 198502 198503 198504 198505 198506 198507 198508 198509 198510 198511 198512 198601 198602 198603 198604 198605 198606 198607 198608 198609 198610 198611 198612 198701 198702 198703 198704 198705 198706 198707 198708 198709 198710 -3.06 -10.4 3.76 -5.28 -1.93 -7.49 -0.98 -3.98 -6.05 1.44 -7.22 11.48 -2.6 -3.8 -5.79 0.58 16.12 3.68 -2.65 -2.2 2.53 0.6 2.4 -1.6 -8.06 0.67 5.49 3.67 3.88 5.91 4.73 2.66 4.17 0.21 -10.13 0.33 -7.97 1.97 -2.2 -5.56 10.99 10.73 2.27 -2.25 -0.16 -0.33 1.81 0.68 -2.76 -34.23 0.17 -6.32 3.63 -1.04 -0.98 -6.92 1.46 -1.76 -4.74 3.33 -5.17 11.64 -1.42 -1.36 -3.98 0.71 14.49 5.09 -3.02 -1.8 3.96 0.53 3.04 -1.05 -5.73 1.69 6.45 5.18 2.18 6.43 5.51 2.27 3.36 -1.58 -8.88 0.57 -6.39 2.56 0.12 -1.86 9.83 8.46 3.27 -2.73 -1.55 1.97 1.98 2.37 -0.49 -30.94 0.62 -5.06 3.52 -0.69 -0.05 -5.33 0.56 -0.72 -5.01 2.27 -4.51 8.76 0.37 -2.15 -1.32 1.1 10.69 3.34 -1.5 0.14 3.77 0.82 2.52 -0.66 -5 3.73 6.54 4.03 2.23 6.61 5.04 1.4 4.2 -0.33 -8.09 2 -5.56 2.25 0.48 -3.82 11.61 6.8 2.52 -2.25 0.18 2.66 2.15 2.78 -1.01 -28.65 1.56 -3.56 2.67 -0.28 1.18 -4.25 1.62 -0.01 -3.38 1.49 -1.91 7.13 1.25 -1.56 -1.52 0.43 10.11 2.75 -1.25 0.41 2.71 1.33 1.53 0.21 -3.93 3.29 4.99 3.99 2.04 8.01 4.72 0.17 3.81 1.25 -6.06 1.89 -4.47 3.03 -0.11 -1.6 9.95 7.09 3.52 -0.58 0.58 1.99 2.92 2.46 -0.4 -28.89 1.63 -3.772631 -1.053284 -0.648105 0.117925 -2.93 -11.11263 -7.543284 -6.328105 -5.002075 4.38 3.047369 2.406716 2.251895 1.227925 0.75 -5.992631 -2.263284 -1.958105 -1.722075 3.18 -2.642631 -2.203284 -1.318105 -0.262075 -4.58 -8.202631 -8.143284 -6.598105 -5.692075 2.14 -1.692631 0.236716 -0.708105 0.177925 -0.99 -4.692631 -2.983284 -1.988105 -1.452075 -3.63 -6.762631 -5.963284 -6.278105 -4.822075 1.34 0.727369 2.106716 1.001895 0.047925 -2.16 -7.932631 -6.393284 -5.778105 -3.352075 8.65 10.76737 10.41672 7.491895 5.687925 2.4 -3.312631 -2.643284 -0.898105 -0.192075 -1.28 -4.512631 -2.583284 -3.418105 -3.002075 -0.93 -6.502631 -5.203284 -2.588105 -2.962075 0.76 -0.132631 -0.513284 -0.168105 -1.012075 8.5 15.40737 13.26672 9.421895 8.667925 3.73 2.967369 3.866716 2.071895 1.307925 -0.26 -3.362631 -4.243284 -2.768105 -2.692075 0.28 -2.912631 -3.023284 -1.128105 -1.032075 1.11 1.817369 2.736716 2.501895 1.267925 2.2 -0.112631 -0.693284 -0.448105 -0.112075 2.3 1.687369 1.816716 1.251895 0.087925 -1.13 -2.312631 -2.273284 -1.928105 -1.232075 -4.05 -8.772631 -6.953284 -6.268105 -5.372075 1.76 -0.042631 0.466716 2.461895 1.847925 4.91 4.777369 5.226716 5.271895 3.547925 3.4 2.957369 3.956716 2.761895 2.547925 3.02 3.167369 0.956716 0.961895 0.597925 5.36 5.197369 5.206716 5.341895 6.567925 6.26 4.017369 4.286716 3.771895 3.277925 0.48 1.947369 1.046716 0.131895 -1.272075 4.04 3.457369 2.136716 2.931895 2.367925 2.35 -0.502631 -2.803284 -1.598105 -0.192075 -8.74 -10.84263 -10.10328 -9.358105 -7.502075 1.76 -0.382631 -0.653284 0.731895 0.447925 -3.14 -8.682631 -7.613284 -6.828105 -5.912075 1.09 1.257369 1.336716 0.981895 1.587925 1.31 -2.912631 -1.103284 -0.788105 -1.552075 -3.48 -6.272631 -3.083284 -5.088105 -3.042075 9.45 10.27737 8.606716 10.3419 8.507925 6.6 10.01737 7.236716 5.531895 5.647925 4.74 1.557369 2.046716 1.251895 2.077925 -1.32 -2.962631 -3.953284 -3.518105 -2.022075 3.15 -0.872631 -2.773284 -1.088105 -0.862075 4.24 -1.042631 0.746716 1.391895 0.547925 5.34 1.097369 0.756716 0.881895 1.477925 0.75 -0.032631 1.146716 1.511895 1.017925 -1.28 -3.472631 -1.713284 -2.278105 -1.842075 -28.87 -34.94263 -32.16328 -29.9181 -30.33208 198711 198712 198801 198802 198803 198804 198805 198806 198807 198808 198809 198810 198811 198812 198901 198902 198903 198904 198905 198906 198907 198908 198909 198910 198911 198912 199001 199002 199003 199004 199005 199006 199007 199008 199009 199010 199011 199012 199101 199102 199103 199104 199105 199106 199107 199108 199109 199110 199111 199112 -8.47 2.81 5.78 5.98 4.09 1.01 -3.6 6.49 -0.92 -4.1 1.24 -2.82 -4.98 1.77 5.39 -1.24 1.29 3.08 3.22 -3.03 2.74 2.19 1.24 -5.12 -0.73 -0.79 -8.28 2.01 4.42 -2.55 8.11 1.15 -4.64 -16.61 -10.64 -6.43 3.6 0.31 7.82 14.22 10.29 1.1 2.35 -7.18 2.57 3.83 4.26 7.1 -1.78 6.33 -4.89 4.92 7.47 7.74 6.07 1.31 -2.15 6.2 -0.35 -2.51 2.76 -1.71 -4.78 4.17 5.9 0.42 2.72 3.24 5.22 -1.66 4.88 -0.19 -0.48 -5.56 0.16 -0.82 -7.58 2.06 2.77 -2.35 6.27 2.56 -5.06 -14.41 -9.35 -6.04 4.86 -0.36 7.14 12.27 8.57 0.88 4.24 -3.88 4.08 4.24 2.52 4.08 -3.73 4.1 -4.83 5.57 4.4 7.57 5.66 2.45 -0.81 6.18 -0.79 -1 2.87 -1.27 -3.6 3.52 4.42 0.66 4.65 3.54 2.08 -2.35 2.28 0.7 -0.52 -4.76 -0.54 -1.05 -4.73 1.19 2.11 -1.85 6 2.56 -3.07 -12.35 -7.82 -6.68 4.56 0.56 10.42 13.14 7.89 1.24 4.56 -3.93 2.27 3.01 0.47 1.55 -4.53 5.63 -4.63 4.95 4.99 7.39 5.31 1.03 -1.83 6.03 0.91 -1.28 1.62 -2.28 -3.04 4.61 4.25 1.53 2.77 2.42 4.01 0.34 3.45 2.7 0.84 -4.47 -0.05 -0.82 -6.84 3.39 3.86 -2.4 4.36 0.46 -3.18 -10.99 -6.95 -5.49 2.41 2.2 8.91 12.28 6.2 0.55 3.13 -4.03 3.38 1.38 -0.13 3.83 -2.91 4.01 -3.5 -9.182631 -6.113284 -6.098105 -6.072075 3.32 2.097369 3.696716 4.301895 3.507925 6.44 5.067369 6.246716 3.131895 3.547925 7.59 5.267369 6.516716 6.301895 5.947925 4.98 3.377369 4.846716 4.391895 3.867925 3.92 0.297369 0.086716 1.181895 -0.412075 -0.93 -4.312631 -3.373284 -2.078105 -3.272075 5.06 5.777369 4.976716 4.911895 4.587925 -1.04 -1.632631 -1.573284 -2.058105 -0.532075 -2.07 -4.812631 -3.733284 -2.268105 -2.722075 2.83 0.527369 1.536716 1.601895 0.177925 -1.03 -3.532631 -2.933284 -2.538105 -3.722075 -4.32 -5.692631 -6.003284 -4.868105 -4.482075 2.62 1.057369 2.946716 2.251895 3.167925 5.58 4.677369 4.676716 3.151895 2.807925 1.8 -1.952631 -0.803284 -0.608105 0.087925 3.07 0.577369 1.496716 3.381895 1.327925 2.9 2.367369 2.016716 2.271895 0.977925 3.51 2.507369 3.996716 0.811895 2.567925 0.53 -3.742631 -2.883284 -3.618105 -1.102075 1.47 2.027369 3.656716 1.011895 2.007925 1.55 1.477369 -1.413284 -0.568105 1.257925 -0.45 0.527369 -1.703284 -1.788105 -0.602075 -6.78 -5.832631 -6.783284 -6.028105 -5.912075 -1.29 -1.442631 -1.063284 -1.808105 -1.492075 -1.66 -1.502631 -2.043284 -2.318105 -2.262075 -6.06 -8.992631 -8.803284 -5.998105 -8.282075 1.54 1.297369 0.836716 -0.078105 1.947925 1.42 3.707369 1.546716 0.841895 2.417925 -3.52 -3.262631 -3.573284 -3.118105 -3.842075 3.42 7.397369 5.046716 4.731895 2.917925 -0.21 0.437369 1.336716 1.291895 -0.982075 -4.59 -5.352631 -6.283284 -4.338105 -4.622075 -12.41 -17.32263 -15.63328 -13.6181 -12.43208 -8.8 -11.35263 -10.57328 -9.088105 -8.392075 -7.25 -7.142631 -7.263284 -7.948105 -6.932075 1.19 2.887369 3.636716 3.291895 0.967925 0.1 -0.402631 -1.583284 -0.708105 0.757925 11.11 7.107369 5.916716 9.151895 7.467925 11.9 13.50737 11.04672 11.8719 10.83792 7.92 9.577369 7.346716 6.621895 4.757925 0.56 0.387369 -0.343284 -0.028105 -0.892075 3.19 1.637369 3.016716 3.291895 1.687925 -3.79 -7.892631 -5.103284 -5.198105 -5.472075 2.6 1.857369 2.856716 1.001895 1.937925 2.72 3.117369 3.016716 1.741895 -0.062075 -1.2 3.547369 1.296716 -0.798105 -1.572075 1.39 6.387369 2.856716 0.281895 2.387925 -2.96 -2.492631 -4.953284 -5.798105 -4.352075 4.92 5.617369 2.876716 4.361895 2.567925 199201 199202 199203 199204 199205 199206 199207 199208 199209 199210 199211 199212 199301 199302 199303 199304 199305 199306 199307 199308 199309 199310 199311 199312 199401 199402 199403 199404 199405 199406 199407 199408 199409 199410 199411 199412 199501 199502 199503 199504 199505 199506 199507 199508 199509 199510 199511 199512 199601 199602 14.52 -0.1 -6.7 -10.15 -1.51 -9.21 0.92 -4.56 0.32 2.62 10.48 1.45 2.63 -7.58 0.57 -3.97 5.54 -1.71 -1.55 3.89 2.41 5.08 -3.91 0.68 2.51 -3.2 -7.51 -3.74 -2.32 -6.71 0.15 3.54 1.14 -1.11 -4.36 -3.12 1.87 2.2 1.03 1.82 1.9 7.74 7.19 4.18 3.5 -6.07 2.03 2.12 1.92 3.21 16.27 5.53 -5.62 -3.53 0.23 -5.24 0.9 -2.9 1.77 1.78 10.54 3.6 5.8 -5.14 1.72 -4.52 4.43 0.57 -0.46 5.08 2.28 4.82 -2.91 0.82 6.43 1.61 -5.18 -0.54 -2.1 -4.38 -0.08 4.87 1.45 1.59 -3.22 -0.45 2.07 3.03 1.9 3.19 2.14 7.88 6.15 5.16 2.3 -6.42 1.7 3.8 0.33 2.34 8.49 2.89 -2.45 -4.83 -0.03 -5.3 1.91 -1.75 1.67 2.78 7.72 4.93 3.83 -2.16 3.58 -2.88 3.79 0.01 0.94 3.71 2.95 4.58 -2.04 1.74 5.21 -0.46 -4.21 -1.49 -0.34 -4.51 0.33 3.04 1.33 0.38 -2.92 0.1 2.6 1.98 0.58 2.06 1.27 5.9 5.07 4.01 1.96 -4.53 1.4 1.02 1.34 3.05 14.14 4.89 0.45 -3.87 -1.32 -5.11 2.5 -2.02 2.11 2.24 8.53 3.82 5.84 -0.47 2.61 -2.35 3.03 -0.7 2.22 3.37 2.93 4.18 -1.95 1.29 5.56 -0.2 -5.02 -0.61 -0.33 -2.19 0.82 3.23 2.09 1.16 -2.86 0.33 2.21 3.08 1.27 2.95 1.61 4.55 5.09 4.36 2 -2.77 2.32 1.5 0.56 2.82 16.37 13.80737 15.04672 7.221895 12.69792 10.02 -0.812631 4.306716 1.621895 3.447925 -1.22 -7.412631 -6.843284 -3.718105 -0.992075 -2.92 -10.86263 -4.753284 -6.098105 -5.312075 1.77 -2.222631 -0.993284 -1.298105 -2.762075 -4.24 -9.922631 -6.463284 -6.568105 -6.552075 2.85 0.207369 -0.323284 0.641895 1.057925 -3.17 -5.272631 -4.123284 -3.018105 -3.462075 0.98 -0.392631 0.546716 0.401895 0.667925 1.26 1.907369 0.556716 1.511895 0.797925 7.82 9.767369 9.316716 6.451895 7.087925 5.13 0.737369 2.376716 3.661895 2.377925 8.16 1.917369 4.576716 2.561895 4.397925 0.79 -8.292631 -6.363284 -3.428105 -1.912075 4.91 -0.142631 0.496716 2.311895 1.167925 -1.25 -4.682631 -5.743284 -4.148105 -3.792075 4.68 4.827369 3.206716 2.521895 1.587925 2.01 -2.422631 -0.653284 -1.258105 -2.142075 3.3 -2.262631 -1.683284 -0.328105 0.777925 3.13 3.177369 3.856716 2.441895 1.927925 3.33 1.697369 1.056716 1.681895 1.487925 4.48 4.367369 3.596716 3.311895 2.737925 -1.91 -4.622631 -4.133284 -3.308105 -3.392075 1.14 -0.032631 -0.403284 0.471895 -0.152075 6.06 1.797369 5.206716 3.941895 4.117925 0.02 -3.912631 0.386716 -1.728105 -1.642075 -3.08 -8.222631 -6.403284 -5.478105 -6.462075 0.75 -4.452631 -1.763284 -2.758105 -2.052075 -0.5 -3.032631 -3.323284 -1.608105 -1.772075 -1.75 -7.422631 -5.603284 -5.778105 -3.632075 1.44 -0.562631 -1.303284 -0.938105 -0.622075 2.84 2.827369 3.646716 1.771895 1.787925 0.76 0.427369 0.226716 0.061895 0.647925 -0.27 -1.822631 0.366716 -0.888105 -0.282075 -3.52 -5.072631 -4.443284 -4.188105 -4.302075 -0.44 -3.832631 -1.673284 -1.168105 -1.112075 2.47 1.157369 0.846716 1.331895 0.767925 3.26 1.487369 1.806716 0.711895 1.637925 0.54 0.317369 0.676716 -0.688105 -0.172075 4.61 1.107369 1.966716 0.791895 1.507925 4.04 1.187369 0.916716 0.001895 0.167925 4.98 7.027369 6.656716 4.631895 3.107925 4.82 6.477369 4.926716 3.801895 3.647925 3.72 3.467369 3.936716 2.741895 2.917925 2.56 2.787369 1.076716 0.691895 0.557925 -2.61 -6.782631 -7.643284 -5.798105 -4.212075 1.27 1.317369 0.476716 0.131895 0.877925 1.45 1.407369 2.576716 -0.248105 0.057925 1.21 1.207369 -0.893284 0.071895 -0.882075 3.55 2.497369 1.116716 1.781895 1.377925 199603 199604 199605 199606 199607 199608 199609 199610 199611 199612 199701 199702 199703 199704 199705 199706 199707 199708 199709 199710 199711 199712 199801 199802 199803 199804 199805 199806 199807 199808 199809 199810 199811 199812 199901 199902 199903 199904 199905 199906 199907 199908 199909 199910 199911 199912 200001 200002 200003 200004 2.6 8.55 7.94 -7.62 -14.66 4.48 2.73 -5.99 -0.46 -0.91 6.47 -5.72 -9.63 -5.25 12.08 3.67 3.62 5.31 10.5 -5.75 -3.84 -6.05 0.4 6.31 5.21 2.01 -6.4 -0.57 -7.24 -27.18 6.13 3.72 10.25 4.36 8.85 -7.82 -3.53 7.76 2.19 6.7 0.99 -2.52 1.92 -0.4 19.69 24.18 9.93 39.78 -14.22 -23.54 3.94 9.39 6.81 -5.82 -9.65 4.69 2.65 -1.56 1.56 1.9 5.25 -5.3 -6.63 -3.54 12.37 4.85 5.61 4.83 9.48 -3.43 -2.54 -2.73 -0.83 6.07 5.68 3.3 -6.34 1.64 -7.58 -22.19 4.15 2.37 7.97 2.37 3.6 -7.46 -5.38 7.66 3.7 8.01 2.18 -1.73 -0.61 0.62 11.13 24.7 6.04 38.62 -19.79 -16.62 3.28 9.13 7.81 -4.78 -6.89 4.11 2.47 0.08 4.09 2.75 6.06 -1.24 -3.59 -2.27 10.09 6.6 6.29 3.57 9.72 -3.27 -1.68 -0.51 -1.05 5.76 5.03 3.29 -4.26 -1.72 -5.78 -19.84 3.71 1.21 6.44 2.65 5.32 -6.07 -1.79 13.14 0.88 7.78 0.83 -2.6 -0.79 -1.23 10.85 10.52 2.54 27.1 -8.62 -12.12 2.86 5.02 6.17 -2.84 -3.95 3.95 3.7 1.22 4.34 2 4.95 0.59 -1.2 -1.86 8.23 7.7 5.97 3.8 8.24 -1.24 -0.07 0.84 -1.08 6.45 4.66 2.74 -2.69 -1.84 -6.42 -19.25 2.77 2.31 7.89 1.12 3.04 -5.68 -3.8 10.53 2.77 6.09 1.94 -1.91 -3.04 -1.32 6.22 8.46 5.31 19.82 -2.9 -7.93 2.37 1.887369 2.716716 2.011895 1.417925 5.77 7.837369 8.166716 7.861895 3.577925 5.32 7.227369 5.586716 6.541895 4.727925 -2.13 -8.332631 -7.043284 -6.048105 -4.282075 -5.98 -15.37263 -10.87328 -8.158105 -5.392075 3.97 3.767369 3.466716 2.841895 2.507925 2.33 2.017369 1.426716 1.201895 2.257925 0.23 -6.702631 -2.783284 -1.188105 -0.222075 4.35 -1.172631 0.336716 2.821895 2.897925 1.71 -1.622631 0.676716 1.481895 0.557925 3.16 5.757369 4.026716 4.791895 3.507925 0.96 -6.432631 -6.523284 -2.508105 -0.852075 -2.16 -10.34263 -7.853284 -4.858105 -2.642075 -2.83 -5.962631 -4.763284 -3.538105 -3.302075 8.07 11.36737 11.14672 8.821895 6.787925 7.07 2.957369 3.626716 5.331895 6.257925 5.95 2.907369 4.386716 5.021895 4.527925 4.53 4.597369 3.606716 2.301895 2.357925 8.83 9.787369 8.256716 8.451895 6.797925 -0.81 -6.462631 -4.653284 -4.538105 -2.682075 -0.63 -4.552631 -3.763284 -2.948105 -1.512075 1.04 -6.762631 -3.953284 -1.778105 -0.602075 -0.81 -0.312631 -2.053284 -2.318105 -2.522075 6.5 5.597369 4.846716 4.491895 5.007925 4.99 4.497369 4.456716 3.761895 3.217925 2.3 1.297369 2.076716 2.021895 1.297925 -2.3 -7.112631 -7.563284 -5.528105 -4.132075 -0.92 -1.282631 0.416716 -2.988105 -3.282075 -5.47 -7.952631 -8.803284 -7.048105 -7.862075 -17.88 -27.89263 -23.41328 -21.1081 -20.69208 1.38 5.417369 2.926716 2.441895 1.327925 1.51 3.007369 1.146716 -0.058105 0.867925 7.81 9.537369 6.746716 5.171895 6.447925 1.24 3.647369 1.146716 1.381895 -0.322075 5.07 8.137369 2.376716 4.051895 1.597925 -5.68 -8.532631 -8.683284 -7.338105 -7.122075 -2.93 -4.242631 -6.603284 -3.058105 -5.242075 9.04 7.047369 6.436716 11.8719 9.087925 5.36 1.477369 2.476716 -0.388105 1.327925 6.45 5.987369 6.786716 6.511895 4.647925 1.62 0.277369 0.956716 -0.438105 0.497925 -3.53 -3.232631 -2.953284 -3.868105 -3.352075 -4.32 1.207369 -1.833284 -2.058105 -4.482075 -2.8 -1.112631 -0.603284 -2.498105 -2.762075 6.65 18.97737 9.906716 9.581895 4.777925 8.32 23.46737 23.47672 9.251895 7.017925 4.37 9.217369 4.816716 1.271895 3.867925 13.96 39.06737 37.39672 25.8319 18.37792 -3.01 -14.93263 -21.01328 -9.888105 -4.342075 -10.44 -24.25263 -17.84328 -13.3881 -9.372075 200005 200006 200007 200008 200009 200010 200011 200012 200101 200102 200103 200104 200105 200106 200107 200108 200109 200110 200111 200112 200201 200202 200203 200204 200205 200206 200207 200208 200209 200210 200211 200212 200301 200302 200303 200304 200305 200306 200307 200308 200309 200310 200311 200312 200401 200402 200403 200404 200405 200406 -13.98 29.58 -8.45 9.33 -10.51 -12.03 -20.83 -9.78 27.37 -13.79 -11.95 8.86 12.92 2.27 -9.79 -8.92 -17.15 8.91 7.22 12.29 -7.44 -9.94 5.82 -8.75 -6.8 -8.46 -19.08 0.69 -10.55 5.17 17.49 -10.4 -0.7 -6.22 3.15 12.31 20.01 5.53 8.76 4.27 3.04 6.07 2.57 0 6.1 0.15 -1.63 -4.27 -2.11 1.19 -7.39 26.47 -1.73 7.84 -1.45 -9.5 -12.21 0.96 17.73 -7.98 -1.39 7.16 11.62 3.03 -7.46 -4.92 -14.54 8.1 8.98 6.64 0.34 -6.23 9.69 -0.23 -5.8 -6.38 -16.38 -1.98 -8.1 5.18 13.24 -5.22 -0.69 -2.49 0.3 11.03 14.7 5.98 8.06 4.92 0.42 8.16 4.24 2.42 5.91 0.06 -0.92 -4.66 -0.38 4.71 -6.99 17.5 0.88 4.78 -2.7 -3.68 -5.39 1.84 13.03 -1.9 -0.64 2.79 8.2 4.18 -0.41 -2.81 -9.37 6.47 4.83 5.97 2 -2.91 6.97 1.83 -1.19 0.46 -13.32 -1.2 -7.01 2.67 9.09 -4.33 -1.76 -1.66 1.27 7.78 10.77 4.54 8.53 3.52 0.43 8.57 4.12 3.54 5.87 0.26 0.11 -3.89 -0.13 3.68 -7.51 18.72 1.64 5.74 -0.16 -5.39 -4.72 3.07 11.42 0.49 -0.93 4.3 12.48 3.15 -0.25 -1.28 -9.65 4.29 6.23 5.75 3.56 -1.47 8.29 4.22 0.74 -0.26 -10.6 -0.91 -6.53 1.63 7.83 -1.9 0.71 -2.13 1.34 7.22 9.27 3.83 9.15 5.62 2.89 10.9 3.96 1.63 6.61 1.07 0.16 -4.46 -0.58 3.55 -7.45 -14.69263 -8.613284 -8.258105 -8.952075 8.13 28.86737 25.24672 16.2319 17.27792 1.33 -9.162631 -2.953284 -0.388105 0.197925 4.56 8.617369 6.616716 3.511895 4.297925 -0.77 -11.22263 -2.673284 -3.968105 -1.602075 -4.29 -12.74263 -10.72328 -4.948105 -6.832075 -4.5 -21.54263 -13.43328 -6.658105 -6.162075 2.9 -10.49263 -0.263284 0.571895 1.627925 13.41 26.65737 16.50672 11.7619 9.977925 -0.08 -14.50263 -9.203284 -3.168105 -0.952075 -1.51 -12.66263 -2.613284 -1.908105 -2.372075 5.74 8.147369 5.936716 1.521895 2.857925 10.29 12.20737 10.39672 6.931895 11.03792 0.03 1.557369 1.806716 2.911895 1.707925 -0.52 -10.50263 -8.683284 -1.678105 -1.692075 -1.04 -9.632631 -6.143284 -4.078105 -2.722075 -13.83 -17.86263 -15.76328 -10.6381 -11.09208 4.21 8.197369 6.876716 5.201895 2.847925 7 6.507369 7.756716 3.561895 4.787925 7.68 11.57737 5.416716 4.701895 4.307925 5.26 -8.152631 -0.883284 0.731895 2.117925 -3.6 -10.65263 -7.453284 -4.178105 -2.912075 9.59 5.107369 8.466716 5.701895 6.847925 5.24 -9.462631 -1.453284 0.561895 2.777925 0.13 -7.512631 -7.023284 -2.458105 -0.702075 -0.72 -9.172631 -7.603284 -0.808105 -1.702075 -12.82 -19.79263 -17.60328 -14.5881 -12.04208 -2.59 -0.022631 -3.203284 -2.468105 -2.352075 -7.89 -11.26263 -9.323284 -8.278105 -7.972075 0.95 4.457369 3.956716 1.401895 0.187925 10.01 16.77737 12.01672 7.821895 6.387925 -2.56 -11.11263 -6.443284 -5.598105 -3.342075 -0.28 -1.412631 -1.913284 -3.028105 -0.732075 -2.35 -6.932631 -3.713284 -2.928105 -3.572075 -0.62 2.437369 -0.923284 0.001895 -0.102075 10.08 11.59737 9.806716 6.511895 5.777925 12.34 19.29737 13.47672 9.501895 7.827925 6.3 4.817369 4.756716 3.271895 2.387925 7.83 8.047369 6.836716 7.261895 7.707925 7.01 3.557369 3.696716 2.251895 4.177925 4.66 2.327369 -0.803284 -0.838105 1.447925 11.44 5.357369 6.936716 7.301895 9.457925 7.11 1.857369 3.016716 2.851895 2.517925 4.35 -0.712631 1.196716 2.271895 0.187925 8.55 5.387369 4.686716 4.601895 5.167925 -0.08 -0.562631 -1.163284 -1.008105 -0.372075 -0.73 -2.342631 -2.143284 -1.158105 -1.282075 -6.22 -4.982631 -5.883284 -5.158105 -5.902075 0.95 -2.822631 -1.603284 -1.398105 -2.022075 4.21 0.477369 3.486716 2.411895 2.107925 200407 200408 200409 200410 200411 200412 200501 200502 200503 200504 200505 200506 200507 200508 200509 200510 200511 200512 200601 200602 200603 200604 200605 200606 200607 200608 200609 200610 200611 200612 200701 200702 200703 200704 200705 200706 200707 200708 200709 200710 200711 200712 200801 200802 200803 200804 200805 200806 200807 200808 -12.77 -1.25 5.06 1.95 10.5 5.16 -6.31 -1.66 -5.7 -5.9 6.88 3.62 7.97 -2.4 1.11 -3.99 4.97 -0.43 11.5 -0.57 3.96 -1.38 -9.26 -1.04 -5.85 3.51 -0.19 7.12 1.35 0.21 1.55 -0.69 0.36 3.2 1.9 0.43 -5.76 0.57 2.28 3.31 -9.38 -1.8 -10.53 -6.06 -4.28 3.36 5.68 -6.47 5.23 1.41 -8.17 -1.07 4.61 2.15 8.74 4.79 -4.41 -0.08 -2.85 -6.27 6.1 3.58 7.27 -0.8 1.36 -2.68 4.8 0.27 9.5 1.24 5.57 -1.34 -5.84 -0.92 -3.35 2.1 0.5 6.2 2.98 1.13 0.21 -0.85 -0.02 0.47 3.56 -0.21 -6.25 0.97 1.99 0.41 -8.52 1.1 -8.58 -3.34 -0.59 3.4 3.33 -9.23 4.64 2.87 -5.88 -0.98 5.01 2.83 8.04 3.22 -3.09 -0.06 -3.08 -5.05 4.73 4.51 6.99 -0.44 0.64 -2.47 4.86 -0.63 8.33 -0.27 4.42 0.57 -3.68 -1.04 -3.04 2.96 -0.24 6.06 1.96 1.36 0.2 -0.72 1.35 0.49 2.57 -0.82 -6.81 1.84 0.65 0.58 -8.02 -0.83 -6.89 -4.88 1.79 0.6 3.4 -10.19 4.79 2.79 -5.73 -1.53 4.25 0.31 7.16 3.85 -3.62 1.98 -2.26 -7.13 3.35 4.91 6.69 -1.71 0.86 -2.19 3.96 0.6 7.96 -0.98 5.59 0.66 -4.74 -0.24 -2.56 3.05 0.97 4.69 2.01 2.63 0.13 -0.98 0.97 -0.04 3.27 -0.76 -7.19 -0.21 0.37 -0.64 -7.84 -1.13 -5.15 -3.22 0.43 0.62 1.88 -8.17 7.65 4.37 -3.87 -13.48263 -9.393284 -7.148105 -7.172075 -2.05 -1.962631 -2.293284 -2.248105 -2.972075 3.65 4.347369 3.386716 3.741895 2.807925 0.59 1.237369 0.926716 1.561895 -1.132075 10.66 9.787369 7.516716 6.771895 5.717925 6.27 4.447369 3.566716 1.951895 2.407925 -1.19 -7.022631 -5.633284 -4.358105 -5.062075 3.1 -2.372631 -1.303284 -1.328105 0.537925 -2.8 -6.412631 -4.073284 -4.348105 -3.702075 -6.52 -6.612631 -7.493284 -6.318105 -8.572075 5.91 6.167369 4.876716 3.461895 1.907925 5.11 2.907369 2.356716 3.241895 3.467925 7.59 7.257369 6.046716 5.721895 5.247925 -0.59 -3.112631 -2.023284 -1.708105 -3.152075 -1.13 0.397369 0.136716 -0.628105 -0.582075 -2.83 -4.702631 -3.903284 -3.738105 -3.632075 3.24 4.257369 3.576716 3.591895 2.517925 0.6 -1.142631 -0.953284 -1.898105 -0.842075 8.47 10.78737 8.276716 7.061895 6.517925 0.48 -1.282631 0.016716 -1.538105 -2.422075 6.89 3.247369 4.346716 3.151895 4.147925 1.96 -2.092631 -2.563284 -0.698105 -0.782075 -4.24 -9.972631 -7.063284 -4.948105 -6.182075 0 -1.752631 -2.143284 -2.308105 -1.682075 -2.41 -6.562631 -4.573284 -4.308105 -4.002075 2.54 2.797369 0.876716 1.691895 1.607925 1.81 -0.902631 -0.723284 -1.508105 -0.472075 5.4 6.407369 4.976716 4.791895 3.247925 3.01 0.637369 1.756716 0.691895 0.567925 3.73 -0.502631 -0.093284 0.091895 1.187925 4.09 0.837369 -1.013284 -1.068105 -1.312075 0.34 -1.402631 -2.073284 -1.988105 -2.422075 0.79 -0.352631 -1.243284 0.081895 -0.472075 2.07 2.487369 -0.753284 -0.778105 -1.482075 2.99 1.187369 2.336716 1.301895 1.827925 0.44 -0.282631 -1.433284 -2.088105 -2.202075 -7.76 -6.472631 -7.473284 -8.078105 -8.632075 -3.1 -0.142631 -0.253284 0.571895 -1.652075 -1.11 1.567369 0.766716 -0.618105 -1.072075 -0.54 2.597369 -0.813284 -0.688105 -2.082075 -9.56 -10.09263 -9.743284 -9.288105 -9.282075 -1.16 -2.512631 -0.123284 -2.098105 -2.572075 -4.07 -11.24263 -9.803284 -8.158105 -6.592075 -3.35 -6.772631 -4.563284 -6.148105 -4.662075 -0.72 -4.992631 -1.813284 0.521895 -1.012075 0.81 2.647369 2.176716 -0.668105 -0.822075 3.02 4.967369 2.106716 2.131895 0.437925 -9.19 -7.182631 -10.45328 -11.4581 -9.612075 1.93 4.517369 3.416716 3.521895 6.207925 6.43 0.697369 1.646716 1.521895 2.927925 200809 200810 200811 200812 200901 200902 200903 200904 200905 200906 200907 200908 200909 200910 200911 200912 201001 201002 201003 201004 201005 201006 201007 201008 201009 201010 201011 201012 201101 201102 201103 201104 201105 201106 201107 201108 201109 201110 201111 201112 201201 201202 201203 201204 201205 201206 201207 201208 201209 201210 -13.09 -23.39 -12.87 3.62 -6.31 -11.33 9.15 18.84 5.95 8.1 8.16 2.83 5.26 -10.91 -0.22 5.69 -4.41 3.78 7.04 6.23 -7.97 -5.9 6.24 -8.84 10.99 6.3 1.89 10.2 -3.3 0.97 3.25 2.6 -0.81 -5.11 -5.06 -12.45 -11.67 13.65 -1.89 -0.12 11.8 1.17 3.42 -4.1 -8.72 6.68 -2.29 2.72 4.88 -5.61 -8.46 -20.03 -12.74 4.75 -8.38 -10.54 13.57 15.67 6.16 4.65 7.15 1.57 6.1 -7.2 -0.09 8.73 -5.23 3.7 7.47 6.16 -5.59 -7.48 5.23 -7.58 11.9 5.57 3.26 7.95 -1.7 5.45 3.5 1.38 -1.34 -3.53 -2.15 -11.54 -14.03 15.24 -0.88 1.86 8.13 1.17 3.48 -1.82 -6.29 6.89 -0.07 1.77 5.62 -3.89 -7.31 -17.61 -13 5.14 -10.68 -11.72 9.67 15.31 4.84 3.77 9.49 4.14 5.01 -6.86 2.82 6.85 -3.74 5.14 7.23 7.45 -7.22 -7.42 7.15 -9.47 13.54 5.42 4.99 9.49 -0.87 3.48 1.46 0.09 -2.22 -1.94 -3.42 -10.19 -9.78 14.52 -3.58 1.09 7.72 0.64 3.29 -2.01 -7.72 6.8 -1.93 3.41 4.19 -3.02 -5.48 -15.13 -11.59 3.57 -15.67 -13.82 8.63 15.56 2.91 2.07 9.76 3.94 5.89 -7.91 1.99 8.48 -3.31 4.48 7.89 9.65 -9.16 -7.27 5.58 -9.03 11.14 4.53 3.81 7.97 -1.31 5.73 1.68 1.71 -4.48 -1.9 -0.87 -9.78 -10.4 14.08 -0.19 1.43 7.06 1.35 3.88 -1.17 -6.79 5.48 -1.7 2.73 4.45 -3.3 -5.67 -13.80263 -9.683284 -8.578105 -6.922075 -23.77 -24.10263 -21.25328 -18.8781 -16.57208 -16.55 -13.58263 -13.96328 -14.2681 -13.03208 3.74 2.907369 3.526716 3.871895 2.127925 -15.18 -7.022631 -9.603284 -11.9481 -17.11208 -14.9 -12.04263 -11.76328 -12.9881 -15.26208 10.31 8.437369 12.34672 8.401895 7.187925 18.78 18.12737 14.44672 14.0419 14.11792 4.65 5.237369 4.936716 3.571895 1.467925 3.07 7.387369 3.426716 2.501895 0.627925 14.03 7.447369 5.926716 8.221895 8.317925 11.38 2.117369 0.346716 2.871895 2.497925 9.47 4.547369 4.876716 3.741895 4.447925 -8.78 -11.62263 -8.423284 -8.128105 -9.352075 0.88 -0.932631 -1.313284 1.551895 0.547925 10.63 4.977369 7.506716 5.581895 7.037925 -0.87 -5.122631 -6.453284 -5.008105 -4.752075 8.03 3.067369 2.476716 3.871895 3.037925 10.02 6.327369 6.246716 5.961895 6.447925 12.56 5.517369 4.936716 6.181895 8.207925 -10.27 -8.682631 -6.813284 -8.488105 -10.60208 -12.17 -6.612631 -8.703284 -8.688105 -8.712075 6.86 5.527369 4.006716 5.881895 4.137925 -9.62 -9.552631 -8.803284 -10.7381 -10.47208 10.64 10.27737 10.67672 12.2719 9.697925 3.61 5.587369 4.346716 4.151895 3.087925 4.5 1.177369 2.036716 3.721895 2.367925 9.18 9.487369 6.726716 8.221895 6.527925 -0.42 -4.012631 -2.923284 -2.138105 -2.752075 6.82 0.257369 4.226716 2.211895 4.287925 2.17 2.537369 2.276716 0.191895 0.237925 0.16 1.887369 0.156716 -1.178105 0.267925 -2.54 -1.522631 -2.563284 -3.488105 -5.922075 -2.05 -5.822631 -4.753284 -3.208105 -3.342075 -1.75 -5.772631 -3.373284 -4.688105 -2.312075 -9.67 -13.16263 -12.76328 -11.4581 -11.22208 -10.57 -12.38263 -15.25328 -11.0481 -11.84208 9.46 12.93737 14.01672 13.2519 12.63792 -0.64 -2.602631 -2.103284 -4.848105 -1.632075 1.77 -0.832631 0.636716 -0.178105 -0.012075 8.02 11.08737 6.906716 6.451895 5.617925 2.94 0.457369 -0.053284 -0.628105 -0.092075 4.89 2.707369 2.256716 2.021895 2.437925 -0.24 -4.812631 -3.043284 -3.278105 -2.612075 -4.67 -9.432631 -7.513284 -8.988105 -8.232075 5.19 5.967369 5.666716 5.531895 4.037925 -2.67 -3.002631 -1.293284 -3.198105 -3.142075 3.36 2.007369 0.546716 2.141895 1.287925 4.7 4.167369 4.396716 2.921895 3.007925 -1.47 -6.322631 -5.113284 -4.288105 -4.742075 201211 201212 201301 201302 201303 201304 201305 201306 201307 201308 201309 201310 201311 201312 -0.35 1.2 7.08 -0.98 8.06 0.31 7.5 -0.39 7.88 -2.34 7.31 -0.32 7.57 2.58 2.11 3.09 4.74 -0.35 7.05 0.55 3.17 -1.04 9.68 -2.85 8.06 0.56 6.58 2.91 0.12 4.22 5.39 0.76 4.87 -1.55 4.3 2.74 7.29 -3.49 6.49 2.88 5.89 2.38 -0.23 4.27 5.57 1.28 3.69 0.27 6.1 0.06 7.81 -3.53 6.81 3.73 6.57 0.73 1.19 -1.062631 0.886716 -1.148105 -1.672075 4.58 0.487369 1.866716 2.951895 2.827925 5.62 6.367369 3.516716 4.121895 4.127925 1.82 -1.692631 -1.573284 -0.508105 -0.162075 4.37 7.347369 5.826716 3.601895 2.247925 0.3 -0.402631 -0.673284 -2.818105 -1.172075 4.4 6.787369 1.946716 3.031895 4.657925 0.32 -1.102631 -2.263284 1.471895 -1.382075 8.17 7.167369 8.456716 6.021895 6.367925 -2.71 -3.052631 -4.073284 -4.758105 -4.972075 6.3 6.597369 6.836716 5.221895 5.367925 3.02 -1.032631 -0.663284 1.611895 2.287925 4.32 6.857369 5.356716 4.621895 5.127925 2.12 1.867369 1.686716 1.111895 -0.712075 rns 5 9.538676 1.188676 1.018676 1.188676 6.328676 -2.681324 -2.811324 3.138676 -1.971324 0.778676 -2.701324 -2.561324 3.278676 2.898676 1.118676 -2.491324 -0.121324 -0.501324 3.118676 -2.081324 2.388676 1.768676 -1.071324 -3.431324 7.178676 2.138676 1.658676 3.008676 -2.861324 -11.16132 2.738676 2.338676 1.548676 7.448676 5.048676 3.378676 7.648676 4.528676 -2.691324 2.298676 -13.38132 -1.221324 -2.621324 -11.97132 -2.831324 -2.981324 1.968676 -1.391324 15.84868 4.308676 3.648676 1.968676 -2.301324 8.458676 10.25868 0.498676 3.268676 -4.251324 -2.691324 8.538676 4.408676 -7.171324 -1.671324 14.17868 10.14868 -1.401324 -0.781324 3.238676 4.728676 0.068676 5.388676 -1.051324 -2.931324 -10.31132 0.798676 -1.481324 -1.141324 -13.91132 -9.511324 1.178676 -5.031324 4.738676 -8.981324 -10.24132 -1.481324 2.698676 -2.881324 -13.61132 -12.04132 -7.621324 2.238676 4.738676 10.00868 -6.581324 -1.381324 9.148676 14.33868 2.468676 3.538676 0.268676 -8.161324 -3.751324 -7.501324 4.058676 -3.971324 -8.861324 -7.191324 11.79868 13.20868 1.958676 -2.001324 -0.521324 -3.861324 -5.361324 -4.391324 0.658676 -5.801324 -3.531324 4.418676 -3.091324 -2.991324 -7.611324 -3.401324 -7.001324 -9.861324 -3.931324 8.788676 -6.091324 5.348676 -0.281324 -19.64132 -5.731324 17.30868 -0.501324 0.308676 -5.781324 -7.781324 -3.121324 -5.421324 -8.501324 -10.01132 8.078676 -8.261324 -10.75132 31.67868 3.328676 8.168676 1.468676 5.058676 6.368676 -2.231324 -9.251324 -5.491324 -0.631324 2.058676 -2.971324 25.28868 14.34868 0.038676 -3.251324 -6.431324 0.438676 -0.471324 -3.151324 0.348676 -3.941324 1.218676 8.458676 4.168676 -1.171324 -0.271324 0.948676 -0.271324 5.678676 -0.401324 -3.251324 -0.241324 -3.711324 7.408676 0.138676 -1.391324 1.968676 6.618676 6.818676 6.448676 -1.281324 3.168676 8.618676 -1.381324 -22.99132 2.678676 -0.871324 10.21868 -2.991324 6.888676 1.818676 -2.731324 3.798676 0.618676 6.438676 -2.541324 -13.08132 4.818676 3.638676 9.258676 -3.651324 -19.17132 4.518676 6.168676 3.768676 7.438676 3.558676 1.358676 0.608676 0.128676 -5.091324 1.628676 0.878676 5.718676 3.938676 1.118676 -0.471324 -3.901324 -6.561324 -7.901324 3.368676 2.458676 -2.741324 -1.861324 -2.501324 -1.461324 2.918676 -2.301324 -2.831324 -2.021324 4.068676 2.758676 10.04868 8.888676 0.818676 5.508676 7.348676 5.958676 7.448676 6.318676 2.678676 -0.861324 -2.771324 0.038676 -4.521324 2.788676 -0.841324 1.588676 -6.171324 0.548676 -2.581324 -5.221324 -0.251324 -3.751324 7.058676 0.808676 -2.871324 -2.521324 -0.831324 6.908676 2.138676 -1.851324 -1.311324 -0.481324 0.608676 0.708676 -2.721324 -5.641324 0.168676 3.318676 1.808676 1.428676 3.768676 4.668676 -1.111324 2.448676 0.758676 -10.33132 0.168676 -4.731324 -0.501324 -0.281324 -5.071324 7.858676 5.008676 3.148676 -2.911324 1.558676 2.648676 3.748676 -0.841324 -2.871324 -30.46132 -5.091324 1.728676 4.848676 5.998676 3.388676 2.328676 -2.521324 3.468676 -2.631324 -3.661324 1.238676 -2.621324 -5.911324 1.028676 3.988676 0.208676 1.478676 1.308676 1.918676 -1.061324 -0.121324 -0.041324 -2.041324 -8.371324 -2.881324 -3.251324 -7.651324 -0.051324 -0.171324 -5.111324 1.828676 -1.801324 -6.181324 -14.00132 -10.39132 -8.841324 -0.401324 -1.491324 9.518676 10.30868 6.328676 -1.031324 1.598676 -5.381324 1.008676 1.128676 -2.791324 -0.201324 -4.551324 3.328676 14.77868 8.428676 -2.811324 -4.511324 0.178676 -5.831324 1.258676 -4.761324 -0.611324 -0.331324 6.228676 3.538676 6.568676 -0.801324 3.318676 -2.841324 3.088676 0.418676 1.708676 1.538676 1.738676 2.888676 -3.501324 -0.451324 4.468676 -1.571324 -4.671324 -0.841324 -2.091324 -3.341324 -0.151324 1.248676 -0.831324 -1.861324 -5.111324 -2.031324 0.878676 1.668676 -1.051324 3.018676 2.448676 3.388676 3.228676 2.128676 0.968676 -4.201324 -0.321324 -0.141324 -0.381324 1.958676 0.778676 4.178676 3.728676 -3.721324 -7.571324 2.378676 0.738676 -1.361324 2.758676 0.118676 1.568676 -0.631324 -3.751324 -4.421324 6.478676 5.478676 4.358676 2.938676 7.238676 -2.401324 -2.221324 -0.551324 -2.401324 4.908676 3.398676 0.708676 -3.891324 -2.511324 -7.061324 -19.47132 -0.211324 -0.081324 6.218676 -0.351324 3.478676 -7.271324 -4.521324 7.448676 3.768676 4.858676 0.028676 -5.121324 -5.911324 -4.391324 5.058676 6.728676 2.778676 12.36868 -4.601324 -12.03132 -9.041324 6.538676 -0.261324 2.968676 -2.361324 -5.881324 -6.091324 1.308676 11.81868 -1.671324 -3.101324 4.148676 8.698676 -1.561324 -2.111324 -2.631324 -15.42132 2.618676 5.408676 6.088676 3.668676 -5.191324 7.998676 3.648676 -1.461324 -2.311324 -14.41132 -4.181324 -9.481324 -0.641324 8.418676 -4.151324 -1.871324 -3.941324 -2.211324 8.488676 10.74868 4.708676 6.238676 5.418676 3.068676 9.848676 5.518676 2.758676 6.958676 -1.671324 -2.321324 -7.811324 -0.641324 2.618676 -5.461324 -3.641324 2.058676 -1.001324 9.068676 4.678676 -2.781324 1.508676 -4.391324 -8.111324 4.318676 3.518676 5.998676 -2.181324 -2.721324 -4.421324 1.648676 -0.991324 6.878676 -1.111324 5.298676 0.368676 -5.831324 -1.591324 -4.001324 0.948676 0.218676 3.808676 1.418676 2.138676 2.498676 -1.251324 -0.801324 0.478676 1.398676 -1.151324 -9.351324 -4.691324 -2.701324 -2.131324 -11.15132 -2.751324 -5.661324 -4.941324 -2.311324 -0.781324 1.428676 -10.78132 0.338676 4.838676 -7.261324 -25.36132 -18.14132 2.148676 -16.77132 -16.49132 8.718676 17.18868 3.058676 1.478676 12.43868 9.788676 7.878676 -10.37132 -0.711324 9.038676 -2.461324 6.438676 8.428676 10.96868 -11.86132 -13.76132 5.268676 -11.21132 9.048676 2.018676 2.908676 7.588676 -2.011324 5.228676 0.578676 -1.431324 -4.131324 -3.641324 -3.341324 -11.26132 -12.16132 7.868676 -2.231324 0.178676 6.428676 1.348676 3.298676 -1.831324 -6.261324 3.598676 -4.261324 1.768676 3.108676 -3.061324 -0.401324 2.988676 4.028676 0.228676 2.778676 -1.291324 2.808676 -1.271324 6.578676 -4.301324 4.708676 1.428676 2.728676 0.528676 E[R_security] Var_Covariance St.Dev Variance Weights 1 2 3 4 5 0.712631 1.2232843137 1.268105 1.442075 1.591324 Step 1. Calculate expected return for ea 64.01896 52.80595 44.59696 40.71931 42.11764 Step 2. Calculate Variance-Covariance m To do so, highlight 5 by 5 array and type =MMULT(TRANSPOSE(data!G3:K614), ( where data!G3:K614 is your Excess Retu CTRL+Shift+Enter 52.805951248 47.391647297 39.698918183 36.669428525 38.146738527 44.59696 39.69892 36.01767 33.03757 34.64563 40.71931 36.66943 33.03757 32.13578 33.25013 42.11764 38.14674 34.64563 33.25013 37.11244 8.001185 6.8841591569 6.001472 5.668843 6.091998 64.01896 47.391647297 36.01767 32.13578 37.11244 -1.544621 0.7143427989 0.002292 Step 3. Calculate variance of each stock to check if your Var_Cov matrix is calcu 1.52424 0.303746 Step 4. Create random weights using w stocks into a risky portfolio. In first four =NORMINV(RAND(), 0, 1) which will ma normal. The last cell needs to be select weights add up to 1. Hence, type in =1Weights sum Constraint_1 1 1 Randomly selected Optimal E[r_portfolio] St. Dev E[r_portfolio] 2.4574337457 5.87446 1.54825434 1.7852222967 1.212921924 2.1756513622 1.6475911409 1.5453799312 2.229474622 2.2027503925 2.2580793754 2.5137960218 2.2244744383 1.3728492503 1.8611893195 1.9916535607 2.3362388838 2.7870297378 1.4160529548 1.2948782584 3.3614844127 3.8095123682 5.40 5.70 5.82 5.87 5.91 5.98 6.02 6.50 6.63 6.69 6.76 6.78 6.81 6.86 7.30 7.71 7.82 7.92 10.69 10.93 2.1796161665 2.3639041264 2.4284357261 2.4574337457 2.4748355058 2.5107514018 2.5256109158 2.7322486808 2.7825258455 2.8081029533 2.833767012 2.8395388707 2.8516736565 2.869138022 3.0259059534 3.1638470202 3.1997829769 3.2338598464 4.0568441596 4.1216846254 16 20 19 21 14 8 10 17 6 18 15 3 4 7 2 11 13 5 12 9 Step 5. To double check that your weigh up and compare to a constraint 1 (this w in an optimuization problem) Step 6. Based on your randomly selecte expected return for your portfolio by =S B2:F2) and pressing Enter, and standard =SQRT(MMULT(B13:F13, MMULT((B4:F and pressing CTRL+Shift+Enter; These a Use F9 button to change your weights. E[r_portfolio and St. Dev. will change. R each time you press F9. Repeat this 20 Step 7. Install Solver. In Solver set obje returns ($A$26 if first field and check "M values of your weights: $B$13:$F$13; S Weights sum up to 1, or $F$19=$F$20 a of risk, meaning we want our risk equal $B$26=$B$28. Dont forget to uncheck t button. In this particular case Solver wi return for teh level of risk=11.08365; Yo exercise for all left over 19 cases. Just c last constraint = to $B$29 (Press OK), th forget to report the optimal values! Step 8. Now you have 20 data points of sellected portfolo returns. Sort these n and plot them against your St. Dev. You increasing lines that do not cross. The u 0.4389013071 11.08 4.1653380475 1 Step 8. Now you have 20 data points of sellected portfolo returns. Sort these n and plot them against your St. Dev. You increasing lines that do not cross. The u frontier! Efficient Frontier 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Randomly selected weights Optimally select lculate expected return for each stock lculate Variance-Covariance matrix fro these five stocks. highlight 5 by 5 array and type TRANSPOSE(data!G3:K614), (data!G3:K614)/611), a!G3:K614 is your Excess Returns in a data sheet. Press ft+Enter lculate variance of each stock's returns and st. deviation f your Var_Cov matrix is calculated correctly eate random weights using which you combine your o a risky portfolio. In first four cells type V(RAND(), 0, 1) which will make draws from standard he last cell needs to be selected to make sure your dd up to 1. Hence, type in =1-SUM(B13:E13) double check that your weights add up to 1, sum them mpare to a constraint 1 (this will also be your constraint muization problem) sed on your randomly selected weights, calculate return for your portfolio by =SUMPRODUCT(B13:F13, d pressing Enter, and standard deviation by MULT(B13:F13, MMULT((B4:F8), TRANSPOSE(B13:F13)))) ng CTRL+Shift+Enter; These are Not Efficient portfolios! tton to change your weights. Each time your olio and St. Dev. will change. Report these two values you press F9. Repeat this 20 times. stall Solver. In Solver set objective: maximize expected A$26 if first field and check "Max" box); By changing your weights: $B$13:$F$13; Subject to constraints: 1). um up to 1, or $F$19=$F$20 and 2) we use all "budget" eaning we want our risk equal to some set number: $28. Dont forget to uncheck teh Non-Negative Variables this particular case Solver will calculate maximum teh level of risk=11.08365; You will have to repeat the or all left over 19 cases. Just click on Solver and CHANGE raint = to $B$29 (Press OK), then $B$30 and so on. Dont eport the optimal values! ow you have 20 data points of optimal, and randomly portfolo returns. Sort these numbers based on St. Dev. hem against your St. Dev. You chould obtain two lines that do not cross. The upper one is your efficient Efficient Frontier ted weights Optimally selected weights

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

International Financial Reporting A Practical Guide

Authors: Alan Melville

6th edition

1292200743, 1292200766, 9781292200767, 978-1292200743

More Books

Students also viewed these Finance questions