Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Find the general solution to the differential equation using the method of variation of parameters. y + 4y = sec(2t) y(t) = ci cos(2t) +
Find the general solution to the differential equation using the method of variation of parameters. y" + 4y = sec(2t) y(t) = ci cos(2t) + c2 sin(2t) + t cos(2t) - -In | sec(2t) | sin(2t) 1 y(t) = ci cos(2t) + co sin(2t) + 2t sin(2t) - In | sec(2t) | cos(2t) y(t) = ci cos(2t) + c2 sin(2t) + t cos(2t) - - In | sec(2t) | sin(2t) 1 O y(t) = c1 cos(2t) + c2 sin(2t) 1 y(t) = ci cos(2t) + 2 sin(2t) + tsin(2t) - -In | sec(2t) | cos(2t)
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started