Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

fMath 265 Lesson 19 12. F = Vp, ad _ 23- 2xy? => -2x y+ #$= 2'- 2xy >29.2 = 2 2 = 7 8

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
\fMath 265 Lesson 19 12. F = Vp, ad _ 23- 2xy? => -2x" y+ #$= 2'- 2xy >29.2 = 2 2 = 7 8 = 2 2yth(2) Job= xz'- xzy z + yz' + h (2) , az ' ,84 : 3x72 + 242 = 3x2" + 2yath'(2) => h'G)=0 => h(7) = |Co = Constant, So : Potential function: | 4 = x2 3 - xzy' + yz2 + Co 3. ds = 1 2' ( +) ldt = 14 sin't + 4 cos' + 4 de = N8dt = 2NI dt, I= J(4cos't +4sin't +4+:)5 I ' S ( 4 + + t ) ) 2 5 2 dt = 8 2 / ? " (Itt ? ) dt - PFI ( 2 x + 3 . 8 1() = / 16 TUNE ( 1+ 41 4. I = [ t ' dt + t . tz . 2 tdt to = [ ! (t' + 2 + + ) at = 3 + = = 5+6 15 15 5. F = = , di = dt, I = [dt I = So let + 2 + + ) dt = et/!+ ; = e'-1+3 = Le- 31 6 . A ( D, 0 , 0) , B ( 0 , 0 , 1), CCO, 1 , 1), A to B . x = 0 , y = 0 , Z E [o, 1] , d3 = IAB : Se/ da = Se' de = So d z . , B to C : x = D, = = 1, y E To, 1] , 15 = IBC: Se* 7 dy = So eddy = - e- 7 /0 = /1 - ell, so: Je F. d3 = LAB+ IBC= 12 - -Math 265 Lesson 20 10) VXF = / 1 ; K = of + 0j+ k (exty-xe*7 ) * 0 dx dy di ey pxty o so it is not conservative field. b) VXF = 1 i j K = 01 - of + K ( - 2 x sing + 2 x siny ) = 0 ax dy dz 2xCosy -X sing So it is conservative field. D 2. VXF = | K = 1 (xsiz -ycos(yz)) - } lysine + x sin(x 2)) + ok # d dy ay da (05(7) sin(yz) xysine So it is NOT conservative. 3. ( = , . BEDo, TC], di = do F . = , I = SF. di I'M - Cos 0 sin 30 + cos'D sing do = So sinocost( cos'9 - sin @) do= =. since. Los 20 do 4. F = of = of = ( @ ) # 8 x = yz " => f = xyz " + y(y, 2 ) , by $ 9 = - yath(E ) , f = xyzzyz th(2 ), of 1 82 = 2 xyz - yth' (2) = 2xyz- y => h'(2)= 0 -> h(z ) = 60, =f= xyz z - yz+Co potential function, Co Is constant. [ # F . di = f (Q) - f (p) = f ( 3,2, 1) - f (1, 2,3) = (6-2)-(18-6) = 4-12:1-8 5. Since V XF = D, So F is conserved and hence exists , such that F = VP. 29 : 27 (Ax + Z z lny + h'(2) = 12 In(xy) => h'(=>= 0> Alz)= Co= constant, so we have 7= 2 2 [n (xy) +Co), since the path is closed, P - Q DROP, So I = SF. d's = IPQ + IQR + IRP = ( $LQ) - Q(PJ) + ($CR) - PCR)) + ( $ (p) - $ CR))= 101 6. Let f = VQ, sof is conserved, so ST. di + SF. dr= 0 PAQ QBP we are given that ff dr=1, so s I- di= -1= - [I.dr = Sule. dr = 1 PAR QBP PBQ bottom halfMath 265 Lesson 21 1. ( a) $ cuiv) = ( ucost, usinv, 42 + v2 ) fu (liv ) = ( cosv , sinv , 24 ) Pull,o ) = ( 1, 0, 2 ) Pv ( u,v ) = (- usinv, ucost, 2V ) For ( 1 10) = (0, 10 ) At of ( 1,0 ) 7 = PU ( 1, 0) x PV ( 1, 0) W = K 2 = 1 = -27 + R (b) Equation of the plane tangent at $ (1, 0) = ( 1, 0, 1 ) -2 ( x - 1 ) + 0(y - 0)+1( 2-1) = 0 - 2x + 2 + / = 0 / 2. $ ( u, V ) = ( ur, uvv, v2 ) at the point P= ( 2, 2, 4 ) Du (u, V ) = ( v, zur, 0) pv = ( 4, 4 2, 2v) Du x Qv = V zuV O = U2 2V At P (2 , 2 , 4 ), UV = 2 , 4 2 v = 2, V2 = 4 3 V= 2 Pull, 2 ) = ( 2, 4, 0 ) Ov ( 1 , 2 ) = n' = dy x DV = 4 O = 4 Equation of tangent plane is 16 ( x - 2 ) - 8 ( y-2)-2(2 -4) = 0 16 X - 32 - 8y + 16 - 22+8 = 0 16X - 8y - 22 - 8 = 0 8 x - 4y - 2 - 4=0

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Graphical Analysis Of Multi-Response Data

Authors: Kaye Enid Basford, John Wilder Tukey

1st Edition

100072302X, 9781000723021

More Books

Students also viewed these Mathematics questions