Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

For (a), the following relationships may be helpful: exer=ex(cosex+siney)=coseex=(sinex+tosey)ex=siner=rrer+re+rzez (b) Obtain an expression for FD. (c) Find the drag coefficient. The general equation for the

image text in transcribedimage text in transcribed

For (a), the following relationships may be helpful: exer=ex(cosex+siney)=coseex=(sinex+tosey)ex=siner=rrer+re+rzez (b) Obtain an expression for FD. (c) Find the drag coefficient. The general equation for the drag coefficient CD from Problem 1 is still valid, but here the projected area will be different. Problem 2 (15 points): Drag on a cylinder at low Reynolds number Consider creeping flow at velocity v=Ux past a long cylinder of radius R and length L that is perpendicular to the approaching fluid. Figure 1 is repeated below - except now imagine instead of a sphere it is a cross-section of a cylinder. Unlike the case of flow pas a sphere, there are no simple expressions for the velocity and pressure through the fluid. However, adequate approximations for the region near the cylinder when Re0 are shown below (Batchelor, 1967, pp. 244-246). You will use these results to obtain an expression for the drag force on a the cylinder. vr(r,)=2C[1(rR)22ln(Rr)]cosv(r,)=2C[1(rR)2+2ln(Rr)]sinP(r,)=r2CcosC=ln(Re7.4)U,Re=v2RU (a) Starting from Eqn 6.6-26 (Deen) and Eqn A 539 (for dSr ) show that the drag on the cylinder would be: FD=0102[(exerP(R,))+re0ex]Rddz

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Fundamentals Of Thermal-Fluid Sciences

Authors: Yunus Cengel, John Cimbala, Afshin Ghajar

6th Edition

126071697X, 978-1260716979

More Books

Students also viewed these Chemical Engineering questions

Question

=+ (c) Show that P[F(X) Answered: 1 week ago

Answered: 1 week ago