Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

For an undirected and unlabeled graph, the function computed in each layer of a Graph Neural Network must respect certain properties so that the same

For an undirected and unlabeled graph, the function computed in each layer of a Graph Neural Network must respect certain properties so that the same function (with shared weights) can be used across different nodes of the graph. Suppose for a specific node i in the graph, hi(l-1) represents the state computed for this node in the previous layer, while the messages from the ni neighbors of node i from the previous layer are denoted by mi,j(l-1), where j ranges from 1 to ni. We use subscripts and superscripts to denote learnable weights. If there is no superscript, the weights are shared across layers. Assume all dimensions are compatible. Explain which of these functions are valid for computing the next message hi(l) for this node. For any choice that is invalid, briefly state why.
Note: Validity means they must satisfy the invariance and equivariance properties required for use as a GNN on an undirected graph.
(a)hi(l)=w1hi(l-1)+w2nij=1nimi,j(l-1)
(b)hi(l)=max(w1hi(l-1),w2mi,1(l-1),w3mi,2(l-1),dots,wni-1mi,ni(l-1))
where max operates element-wise on vectors.
(c)hi(l)=max(w1hi(l-1),w2mi,1(l-1),w2mi,2(l-1),dots,w2mi,ni(l-1))
where max operates element-wise on vectors.
image text in transcribed

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Pro SQL Server Wait Statistics

Authors: Enrico Van De Laar

1st Edition

1484211391, 9781484211397

More Books

Students also viewed these Databases questions