Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

For this assignment use the following datafile: data file First, participants were asked to rate a series of different words on their meaningfulness or pleasantness.

For this assignment use the following datafile: data file

First, participants were asked to rate a series of different words on their meaningfulness or pleasantness. Scores for both questionnaires were rated on a Likert scale from 1 (not meaningful, not pleasant) to 5 (very meaningful, very pleasant). Once the ratings were obtained, the researchers grouped these words into sets based on previous research. This produced four sets of words: Education words, Goal words, Noun words, and Religion words. The data set provided contains the average ratings for the words by set. These same participants then completed a "purpose in life questionnaire" (PIL), where the scores on questions were totaled for each participant.

IV:

  • Control variables: Age, gender (1=female, 2=male)
  • Experimental manipulation: priming type (1=meaningful, 2=pleasantness)
  • Education words averaged (i.e., accomplish, College, Degree, Education, Grades, Graduate, School, Teacher, Undergrad, University)
  • Goals words averaged (i.e., achieve, ambition, become, goals, progress, success)
  • Nouns words averaged (i.e., everything, know, lot, many, mind, much, right, some, something, thing, time, what, when)
  • Religion words averaged (i.e., serve, glorify)

DV: PIL total - sum of scores on the purpose in life questionnaire

Research Question:We would like to test whether word ratings predict scores on the PIL questionnaire, above and beyond control variables and experimental manipulation. HINT: To test this, you will need a regression model that includes demographics and priming type (the null model) as the sole predictors, as well as a second regression model that includes actual predictor variables in addition to the controls (the regression model).

Data below:

age (ordinal variable) gender (nominal variable) primetyp (nominal variable) PILSF_total_w1 (scale variable) educationavg (scale variable) goalsavg (scale variable) nounsavg (scale variable) religionavg (scale variable)
18 1 1 16 2.666667 4.285714 3.538462 4
19 1 1 24 3.444444 3.428571 3.230769 4.5
18 1 1 25 3.555556 4.857143 3.153846 3
18 1 1 22 4.666667 4.571429 3.384615 3
19 1 1 24 4.444444 5 3.692308 5
19 1 1 26 4.777778 4.714286 3.615385 4
19 1 1 21 4 4.285714 3.076923 4.5
20 1 1 24 4.111111 4.285714 3.846154 3
19 1 1 22 3 3.857143 3.153846 3.5
19 1 1 21 3.444444 4 3.384615 2.5
20 1 1 28 3.666667 4.571429 2.846154 3.5
18 1 1 24 3.666667 4.571429 3.538462 3
19 1 1 25 3.888889 4.571429 3.307692 4.5
18 1 1 22 4.222222 4.571429 3.307692 3
19 1 1 24 3.222222 3.714286 3.230769 3
18 1 1 22 3.888889 4.714286 3.153846 3.5
18 1 2 22 2.666667 2.285714 3.076923 4
19 1 2 16 2.666667 2.714286 3.230769 2.5
18 1 2 20 3.111111 2.571429 2.384615 4
21 1 2 24 4.888889 4.428571 2 3
19 1 2 28 4.555556 5 2.538462 5
18 1 2 19 4.111111 4.571429 4.076923 4
18 1 2 20 4.444444 4.142857 3.615385 3
32 1 2 18 3.888889 4 3.769231 3.5
24 1 2 24 4.555556 5 2.923077 3
18 1 2 26 4.888889 5 3.076923 3
21 1 2 21 3.555556 3.857143 3.076923 3
22 1 2 24 4.555556 4.714286 2.538462 3.5
20 1 2 22 3.888889 4.142857 3.307692 4
21 1 2 20 4.222222 4.571429 3 3.5
18 1 2 23 4.444444 4.428571 2.846154 3.5
18 1 2 20 4.333333 4.428571 2.923077 3.5
19 2 1 26 5 5 5 5
18 2 1 24 3 3.428571 3.307692 1.5
18 2 1 22 3.111111 4.714286 3.076923 3.5
20 2 1 22 4.777778 4.857143 3.692308 2.5
18 2 1 24 3.777778 4.857143 2.384615 3.5
18 2 1 27 3.888889 5 2.769231 4.5
18 2 1 21 2.777778 4 2.615385 3
18 2 1 23 4 3.714286 3.615385 3
18 2 1 22 3.777778 4.714286 3.923077 5
23 2 1 23 4.555556 4.857143 2.692308 4
41 2 1 26 4.777778 5 4.076923 5
18 2 1 25 4.777778 5 3.307692 3
21 2 1 24 4.666667 4.571429 4.153846 4
18 2 1 28 5 5 4 4
18 2 1 25 4.666667 5 3.769231 5
20 2 1 20 4.111111 4.714286 3.615385 2.5
19 2 1 21 3.555556 3.571429 3.307692 2.5
22 2 1 22 4.444444 4.571429 4.153846 4.5
18 2 1 23 3.111111 4.142857 3.538462 4
19 2 1 22 3.111111 4.285714 3.153846 3.5
18 2 1 28 4.777778 4.714286 3.538462 4
20 2 1 28 4.444444 5 3.769231 5
19 2 1 25 3.666667 4.857143 3.692308 4
19 2 1 18 3.555556 4.571429 3.538462 4.5
19 2 1 18 4.444444 4.714286 3.076923 4.5
18 2 1 19 3 4 3.384615 3.5
20 2 1 21 4.333333 4.428571 3.307692 4.5
19 2 1 27 4.333333 4.857143 3.923077 3
18 2 1 27 4.222222 4.857143 4.230769 3.5
18 2 1 25 4.555556 4.571429 3.384615 3.5
18 2 1 19 4 4 3.384615 4
18 2 1 25 3.444444 4.428571 3.307692 3
19 2 1 25 4.666667 4.857143 3.538462 4
19 2 1 25 4.333333 5 3.153846 4
18 2 1 25 3.555556 4.571429 3.153846 3.5
18 2 1 22 4.111111 4.428571 3.538462 4.5
21 2 1 27 4.555556 4.857143 3.769231 3.5
19 2 1 22 4.555556 4.714286 3.461538 4
18 2 1 27 4.222222 4.857143 4 3.5
19 2 1 20 3.555556 3.714286 3.076923 3
18 2 1 28 4 4.857143 3.230769 3.5
19 2 1 26 3.333333 3.857143 3.461538 3
20 2 1 22 3.333333 4.142857 3 3.5
18 2 1 25 4.444444 4.857143 3.384615 3.5
19 2 1 18 4.444444 4.714286 3.384615 4
21 2 1 22 4.111111 4.571429 3.461538 3
22 2 1 19 3.333333 4 3.307692 3
18 2 1 17 3.777778 4 3.230769 3
18 2 1 25 4.222222 4.428571 3.384615 4
20 2 1 23 3.666667 4.428571 3.384615 4
18 2 1 25 3.888889 4.571429 3.615385 4
18 2 2 23 4.666667 3.571429 3.153846 5
21 2 2 27 5 5 5 5
20 2 2 21 4.222222 4.571429 3.538462 2
21 2 2 28 4.333333 4.428571 1.615385 3
18 2 2 15 5 5 2.076923 4.5
19 2 2 24 4 4.142857 1.846154 4.5
19 2 2 21 2.888889 3.428571 2.153846 3
19 2 2 25 4.888889 4.428571 2.076923 4
43 2 2 23 4.555556 5 3.384615 2.5
21 2 2 28 4.555556 4.428571 1.923077 4
18 2 2 27 4.777778 5 2.384615 5
19 2 2 25 4.777778 4.428571 2.692308 2.5
19 2 2 27 4.666667 4.714286 2.230769 3
19 2 2 23 4.888889 5 4.307692 5
18 2 2 22 4.333333 4.714286 3 2.5
18 2 2 24 4.888889 4.857143 4.153846 3.5
20 2 2 25 5 5 3.692308 3
21 2 2 20 3.888889 4.285714 3.307692 5
20 2 2 15 4.777778 4.285714 3.384615 3
18 2 2 22 4.222222 4 3.153846 2.5
18 2 2 26 3.888889 4.714286 3.538462 4
19 2 2 19 4.888889 4.571429 2.384615 4
18 2 2 22 4.777778 4.428571 3.538462 5
18 2 2 26 4.888889 5 4.230769 4
19 2 2 28 4.777778 4.857143 4.230769 4.5
18 2 2 24 4.777778 5 4.230769 4.5
19 2 2 17 3.555556 4.285714 3 4
20 2 2 26 4.222222 4.142857 3 2.5
19 2 2 24 5 5 4.153846 4
19 2 2 25 5 4.857143 2.923077 5
19 2 2 26 4.111111 4.571429 3.153846 5
18 2 2 22 4.555556 4.857143 2.692308 3
20 2 2 24 4.444444 4.428571 2.384615 4.5
18 2 2 22 4 4.714286 3.384615 4.5
18 2 2 22 4 4.714286 2.692308 4
21 2 2 15 4.444444 4.285714 2.538462 4.5
18 2 2 23 4.777778 5 2.538462 4
18 2 2 25 4.444444 4.428571 3.384615 5
18 2 2 23 4.888889 5 3 5
19 2 2 20 4.111111 4.285714 3.769231 3.5
18 2 2 23 4.888889 4.714286 2.692308 4.5
22 2 2 17 4.666667 4.142857 3.192308 4
19 2 2 22 4.444444 5 3.769231 4.5
19 2 2 28 4.555556 4.714286 2.769231 3
18 2 2 25 4.444444 4.857143 3.230769 5
18 2 2 25 4.666667 4.571429 2.461538 3.5
18 2 2 26 4.222222 4.857143 3.461538 4.5
21 2 2 25 4 4.428571 2.769231 4.5
18 2 2 26 4.666667 4.857143 3.615385 5
22 2 2 23 4.222222 3.857143 3.153846 3.5
18 2 2 20 4.888889 5 3.923077 4
19 2 2 23 4.111111 4.714286 3 3.5
18 2 2 26 4.888889 4.571429 3.615385 4
19 2 2 24 4.444444 5 3.230769 4.5
18 2 2 20 4.222222 4.714286 3 4.5
21 2 2 24 4.333333 4.714286 3.692308 4
21 2 2 20 4.444444 5 3.384615 4
18 2 2 19 4.777778 5 3.769231 4.5
18 2 2 25 4.777778 5 3.153846 3.5
18 2 2 23 4.555556 4.714286 2.692308 3.5
19 2 2 22 4.555556 4.857143 3.692308 4.5
18 2 2 24 4.666667 4.571429 3.538462 3.5
19 2 2 25 4.777778 4.571429 3.384615 4.5
19 2 2 22 4.777778 4.714286 2.769231 4
19 2 2 21 4.333333 4.428571 3.461538 4.5
19 2 2 24 4 4.285714 3.307692 4
18 2 2 27 4.666667 4.714286 3.538462 4.5
18 2 2 25 4.888889 5 3.384615 4.5
18 2 2 24 4.777778 5 3.384615 4.5
21 2 2 26 4.444444 4.714286 3.230769 4.5
19 2 2 20 4.777778 4.857143 3.538462 4
22 2 2 28 4.555556 4.571429 3.153846 3.5
19 2 2 24 4.666667 4.714286 3 4

How is the experiment done in JASP (explain the steps for descriptive statistics and multiple regression in JASP) (Note: when putting variables in JASP, covariates only support ordinal and scale and factor supports nominal)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Linear Algebra A Modern Introduction

Authors: David Poole

3rd edition

9781133169574 , 978-0538735452

More Books

Students also viewed these Mathematics questions