Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

For which of the following series does the alternating test ensure convergence ? displaystyle sum_{n=0}^infty (-1)^n frac{(n^2)!}{(2n)!}n=0(1)n(2n)!(n2)! displaystyle sum_{n=1}^infty (-1)^n ln frac{n+1}{n}n=1(1)nlnnn+1 displaystyle sum_{n=1}^infty (-1)^n

For which of the following series does thealternating testensureconvergence?

\displaystyle \sum_{n=0}^\infty (-1)^n \frac{(n^2)!}{(2n)!}n=0(1)n(2n)!(n2)!

\displaystyle \sum_{n=1}^\infty (-1)^n \ln \frac{n+1}{n}n=1(1)nlnnn+1

\displaystyle \sum_{n=1}^\infty (-1)^n \arctan (\pi n)n=1(1)narctan(n)

\displaystyle \sum_{n=0}^\infty (-1)^nn=0(1)n

\displaystyle \sum_{n=0}^\infty (-1)^n\left(\frac{-1}{5} ight)^nn=0(1)n(51)n

\displaystyle \sum_{n=1}^\infty (-1)^n \frac{2n-1}{2n+1}n=1(1)n2n+12n1

\displaystyle \sum_{n=1}^\infty (-1)^n \ln^2 \left( \cos \frac{1}{n} ight)n=1(1)nln2(cosn1)

\displaystyle \sum_{n=1}^\infty (-1)^n \arctan\frac{1}{n}n=1(1)narctann1

\displaystyle \sum_{n=1}^\infty (-1)^n \left( \frac{3n-1}{n^2} ight)^nn=1(1)n(n23n1)n

\displaystyle \sum_{n=0}^\infty (-1)^n \frac{(n!)^2}{(2n)!}n=0(1)n(2n)!(n!)2

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Calculus

Authors: Dale Varberg, Edwin J. Purcell, Steven E. Rigdon

9th edition

131429248, 978-0131429246

More Books

Students also viewed these Mathematics questions