Question
From the below, create class which implements RecusiveMethods ---------------------------------------------------------------------------------------- import java.security.SecureRandom; /** * * DO NOT CHANGE THIS CODE * */ public class RecursiveMain {
From the below, create class which implements RecusiveMethods
----------------------------------------------------------------------------------------
import java.security.SecureRandom;
/**
*
* DO NOT CHANGE THIS CODE
*
*/
public class RecursiveMain {
public static void main(String[] args) {
SecureRandom secureRandom = new SecureRandom();
long[] fibonacciArray = {0,1,1,2,3,5,8,13,21,34,55,89,144,233,377};
long[] factorialArray = {1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800l,87178291200l};
long[] fArray = {3,6,15,48,195,978,5871,41100,328803,2959230,29592303,325515336,3906184035l,50780392458l,710925494415l};
RecursiveMethods myRecursive = new MyRecursive();
for(int i = 0; i < fibonacciArray.length; i++) {
if(myRecursive.fibonacci(i) == fibonacciArray[i]) {
System.out.println("[OK] - fibonacci(" +i+") = "+ fibonacciArray[i]);
} else {
System.out.println("[XX] - fibonacci(" +i+") expected "+ fibonacciArray[i] + " but found " + myRecursive.fibonacci(i));
}
}
for(int i = 0; i < factorialArray.length; i++) {
if(myRecursive.factorial(i) == factorialArray[i]) {
System.out.println("[OK] - factorial(" +i+") = "+ factorialArray[i]);
} else {
System.out.println("[XX] - factorial(" +i+") expected "+ factorialArray[i] + " but found " + myRecursive.factorial(i));
}
}
for(int i = 0; i < fArray.length; i++) {
if(myRecursive.f(i) == fArray[i]) {
System.out.println("[OK] - f(" +i+") = "+ fArray[i]);
} else {
System.out.println("[XX] - f(" +i+") expected "+ fArray[i] + " but found " + myRecursive.f(i));
}
}
}
}
----------------------------------------------------------------------------------------
/**
*
* DO NOT CHANGE THIS CODE
*
*/
public interface RecursiveMethods {
/**
*
* @param n
* @return - the fibonacci value at n
*/
public long fibonacci(int n);
/**
*
* @param n
* @return - n!
*/
public long factorial(int n);
/**
* WHERE
*
* f(n) = n * f(n-1) + 3
* f(0) = 3
*
*/
public long f(int n);
}
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started