Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

From Theory to Empirics A central question in development economics is why some nations are rich and other poor? An- swering this question has important

image text in transcribed
image text in transcribed
image text in transcribed
image text in transcribed
image text in transcribed
image text in transcribed
image text in transcribed
image text in transcribed
From Theory to Empirics A central question in development economics is why some nations are rich and other poor? An- swering this question has important implications for development polices, which aim to advance human wellbeing and eliminate poverty. Let's see how economics tackles this question (of course I cannot talk about every economic theory addressing this question here). 2.1 Production Function and Capital endowment The total production in country i depends on labor L, capital, K, and raw materials, R. We use the famous Cobb-Douglas function to model the relationship between production output and inputs. First lets define the value added of production as the value of total output Q minus the value of raw material, R: V = Q - R. Then we write the Cobb-Douglas using V. Vi = K L-a This equation tells us that the value-added measure of output in country i, Vi depends on K and L in country i. a is a positive parameter less than one. Usually, when we compare the economic perforce between countries we use GDP per capita (or value added per capita). Hence, we would like to write the Cobb Douglas in terms of value added per capital. Ki Vi KL L; v; = ko (1) VA where vi = and ki = L Li 1. If equation 1 hods perfectly how would the scatter diagram plotting v against k look like? 2. In reality we know that equation 1 does not hold perfectly. Rewrite equation 1 to include all other variables that might affect v in addition to k. 3. Suppose you have data about v and k, how would you estimate equation 1. 4. Use the dataset hjoines.dta to plot a scatter diagram between v and k. 5. Estimate your model in (3). Interpret the coefficient of k 6. Add the regression line to the scatter figure. Make sure you label the scatter points in the diagram. (use mlabel option). 7. How much investment for capital per capita is needed in Tanzania to be as rich as USA? 8. Could you think of a method to test the normality assumption (u ~ N(0,02)). Hint: obtain from the above regression and plot a histogram for . You might want check the commands: pnormal and qnormal 9. Assumption 5 states that Var(u|X) = E(u2|X) = 02 ( constant variance (homeskdacity)). Could you think of a way to test this empirically. Hint: the distribution of u should not be correlated with X or Y. You might want try the command rufplot. 10. Discuss whether the model can tell why some countries are rich and others poor (hint: does the regression provide causal relationship between v and k). 11. Add human capital to your regression and estimate the model (note: use number of years of education divided by L as a measure of human capital). Mangley ALGERIA ANGOLA 0.053 4 grote 0006 15. 15.27332 14.00 12.9012 0.41 O EMT 0 17 0.2457 021333 024306 s 143 1 CM ON 0.111 0356 EMA 6000 1000 100 1 26 2.43 312 21 2.646 NEO TED HE Noki 1 10 069 047141 170025265116 0109134 641133 176 7.5401005146 0.0938760231 810645 19 054615 1 69208676837 091417 0.0 6530 1 696107ASES 015225 2.00080268116.4571 7.9030 8.6404 0.00 2337510 1 78201 0.4424 3.32 0.0013 7.00 688849 000 136 0.1604698973 17064 5.381 05773260203 1 7.257 031784 02.01.2002 8.3052 50015006541 3.14 0.4201 1 DS BOTSWANA BURKINA FASO BURUNDI CAMEROON CAPE VERDES CENTRAL AIR CHAD COMOROS . 003 Q14 0.001 9000 100 0.220 1481553 1595863 11 BOS 1414141 14.45478 12.05 13.77979 0 RO 1 1 1 2.79 3.100 2.17 3 000 1073 15.00 4 30 116 wan 24 14 $ Comoros O 6.27 0.00 ODT 100 04 0 Core CONGO DOT 0 3.845 334 1 004 O 1000 11 23 0.51 O O O 2.464 21 0 O wbcode wbouw DRA Algeria ADO Angel BEN SWA BFA Burkina Fase BO! Burundi OMR Cameroon CPV Cape Verdes CA CAR TCD Chad Cou COS DE EGY Cert TH Ethiopia GAB Gabon GMB Gambia GHA GIN GNB CV Ivory Coast KEN LSO Lesotho LBR Liberia MDG Madagascar MWI MU MRT Mauritania MUS Mauritius MAR Morocco MOE Morambique NAM Namibia NER Nger O EGYPT ETHIOPIA GABON GAMBIA GHANA GUINEA 0315 OS OG LIVE 2006 LED 0 - 1 1 4 1 1 2016 0.222 0222 02 o O 3955 29 3336 11 257 SEN 067 0 GUINEA IVORY COAST 12.6139 15 61004 141638 12.99862 15.90041 36.13396 13.58411 POS MO 090 0 1222 O KUNTA 1 1 . 0 0.002 5050818 1 0.10731 5 1 0.2755 0019931 5 20663 50 . 10.38128 5035135 1 025672 5 03122 50.11106 5055154 5 1 5 1 0.23328 30.20054 5 0.15191 3 0.5072 1 0.26 3 0.365 5 0.253 2.08 2.524 10 16.80153 812542 0.33805 5.0974 064585 8.43273 1 162177 10.05713071468 22546022 760052 7.447709654 0.17609 04011256 751226 7.5 7.10093 0.21008 122 0.431487.2017 1 7.32935 6.90098 021119 21595031619 72144 7.23673 7.8141029869 0.56 07504 1 8.14367 8.44026 0.1429292846 0.39241 760297 7.597878163 0.15847 0.414067.000 3 7.71105 783589 0.06212 3.51 0.47034 71779 1 7.2735 5.7622 7545 3.97152 0.52218 749678 1 6954 7.07719009142 2.58 0.57 6.54722 7.113 6.72355 02 0.10988 7.19837 1 7464 8.30818 0.41087 251012 0.3346 1 91145 4.59 0.550 0022 3.74085 0.0271507048 0.64412 1 7.21750 602818 0.6032 0.14472 1 8.83613 10 1921 067798 141427 0.45751 770053 O 7049 006562 054 0.02.16 0.005 0. 061 017 0.436 500 0 1 1 0.007 0 . 0 0 3 2393 1 18 0 LESOTHO UBERIA MADAGASCAR MALAWI MALI MAURITANIA MAURITIUS MOROCCO MOZAMBIQUE MAMIA 15647 15.0480 15.01141 13.55016 011 0 D . O 11 20232 0.704 1 1 1 1 1 1 0.66 15 82804 15.83146 0 O 0.001 0.003 003 OM2 0.01 06 0 0012 1154 14 2543 2.400 09 2515 O 0536 NIGER 0 O 20 Nigeria Reunion 4 NGERIA REUNION WWANDA SENEGAL SEYCHELLES SIERRA LEONE 0 0.357 i 1 0.327 0 10 3266 01002 Docs 0.00 0.061 0.003 17.01 12.342 14.93 14.57867 10.2014 14.1847 15.00 16.31631 TE SED 0.64 O REU EWA SEN SYC SI SOM ZA SON SWE TZA TGO TUN o O 2014 -2012 14.772 466 8.395 0.611 -2.13 14043 0.10 10 1097 SOMALIA Senegal Seychelles Sierra Leone Somalia South africa Sudan Swaziland Tanzania Topo 0.32 0.00 0 0.00 1.135 2.701 2.136 2.395 12.65879 03 0308 0.602 0.551 O 1 1 1 1 1 1 1 1 1 1 1 1 LOT 0.006S O O 214 1 7.44511 8.21654061142 019621 66345 16 9.57263 0.2922 191338 0.52439 10 1732245 0.84 011156 7.500 7839 76029292 239 17025 1 34 9.41304 023735 2.22702 0.248.40257 7.72941 6.1593 0.78505 172 0.23048 8.28399 1 7.45231 7.50918 0.06844228781 0.30657 7.0773 O 9.90849040907 4.95 0.631 32 1 7.76558 8.31243 027343 0.91 0.12194 7.37021 1 8.66 9.00675 016853 3.77 0.50515 7.99596 7.02414 7.0657 0.02073 2.23 6. 7.25061 789372 0.32156 213 E6436 8.948429.28947 0.17052 2.48 3.44556 O 7.02369589581 -0.56334 1.92 0.25728 2.05 1 7.05455 656787024324 2:24 0.30016 6.99743 0749617 877629064036 4.35 0.57135628445 7.74836 8.43456 0.341 263 0.35242705284 1 9.5687 9.836 01336 743 08.54757 0 9270 0 10.41442 1131986 0.45272 1037 110116 6604 3 9.11803 97223030043 5.33 0.6703314537 4 016711 5 0.53117 0.2767 1 0.2273 4 . 0.33733 3 0.26178 2 2. 1725 3.171 LIGA 1454251 1471480 15.78421 16.0688 14.04 1523019 0.099 0.001 0.04 0204 0.06 0.006 0 0 1036 28 59 ande 2 ZAR IMS ZWE 2114 0434 CVETO HUO 0 2 O 2492 014 0.865 1 it.i..SHIBIS.............. 0 247 1 MENO 5 0.000 BRB 1 0.739 0.61 O 1000 PEDO 16.37839 SOUTH AFRICA SUDAN SWAZILAND TANZANIA TOGO TUNISIA UGANDA ZARE ZAMBIA DIMLARWE BAHAMAS MARBADOS BELGE CANADA COSTA RICA DOMINICA DOMINICAN REP EL SALVADOR GRENADA GUATEMALA HATI HONDURAS JAMAICA MEXICO NICARAGUA PANAMA PUERTO RICO 4097 471 AN . 3151 CAN 5 5 0.96578 1 054611 0956 0053 5 0.001 0.004 0 1 1 0 1 1 0 1 0.016 0.26 0001 0 1 1 2541 30185 1108 0906 1054 OH w 15 9.341 15.455 18.561 13.75 Zimbabwe Bahamas Barbados Belar Canada Costa rica Dominica Dominican rep El salvador Grenada Guatemala Hati Honduras Jamaica Mexico Nicaragua Panama Puerto rico DUA DOM SLV GRD GTM HTI LEO 0432 14.55682 14 31394 10.59015 14.72302 14.77 14.1977 O 0 0 3.093 0588 0.005 14 19 0.001 0.002 0014 0.00 OD 02571 0863 03128 357.47338 11673 69338 8.91335 895836 0. 35478 7.6053 7.40046010292 160.21708 749234 3.4336 8.73022 014758 3.56 0.47704 7.80844 8.43284 9.45961 051118 4.16 055216 9.63754 10.25586030916 4.42 OST.74955 1 4028 9.07821 0.33547 1.78 0.50652 7.5563 1 9.99013 0.45313 0.7687.74567 1 10 13436 30.65694 0.26129462541 099917 9 TI 0.236 0:434 0544 2017 HIND 7.36 30.3678 1 011783 303361 5 0.43311 3 1 0.433 3 011445 0432 02 DR O 0 1.509 1 1 1 1 1 1 17.000 MEX NIC PAN PRI WHO 3.36 041 116512 1195737 0.001 GO 0.895 1 SET KNA YST TO W USA se NETISCH WE 1 1 STRES SE VICENTE TIDAD TOBAGO USA ARGENTINA BOUVIA BRE CHE COLOMBIA ECUADOR GUYANA PARAGUAY BSS 1 SO 8. $ IEI Swee BRA CHL COL TCU SUSTE 1 1 SEED Gars 0.0 OM 07 TO - NA ON 1723 2007 40.43 47 45 Com Bruder 14005 0913 017 2 . 0:00 . ........ 09 0991 - 11 A BOSELE O 067140 00 PER 12:57 1412 OST 202 74 O 14 Suriname uruguay O TE GEMEE LED VE TO WOO 1 1 1 1 1 0.005 7170 5.0.7187914 2100019 LIRUOWAY VENEZUELA 1 URY VEN SHR BGD 0.49 D 1114413 11912 9.50 10.00 0.3323 9730 0.00 02 2014 0.001 011 0.355 ho OV 9 0 0 0 D 0 15.2 0 1 2012 BANGLADESH BHUTAN . Bangladesh Bhutan ON Hong Kong 1 SEL CHIN 11714 SOS 3422 9.841 26.04 23 TAT . 1612 PE 0 CHINA DO 9 1 1 0 . 0 o o 1 7.66033 0771001516 0802349 220 GION 8.27148.99762 0.36261 05462 30.11774 0.4156 IND ON 709 1000 O O UVO 15 10941 19.57 13.0L716 073 0.004 0.004 22.304 0.017 0.121 0.019 O 3 1191 1457 re re pan 1 0.003 0.956 0 o 6 . 0 0 7.51 0.01 BON 0.4087 . 3.75 as 740739 13 0.4952 1354 10 9:41 108.53 090118 8.40857 0.56731 8.82517 75 0.24 059951 3 2472) 001111 0.48911 1 1 0 IND INDONESIA TRAN MAQ SRAEL JAPAN FOROAN KOREA, AFP KUWAIT LAOS MALAYSIA MONGOLIA 3000 2562 1 om 10 OS 10.1542 0.3572 09.94306 11.06 0.5632 0.5 10.00383 0.20578 1.50321 10.11257 0.0168 09.9411 0.225 0.756 0912 D 0.733 0 0 0 JON KOR KWT LAO MYS MNG 0.037 0.007 1992 . 4.222 0:5545 35.712 0 0 0 14.15036 16.10T 11.42504 16 677 13.50473 14.45495 15.72196 1178818 kuwa ) Laos Malaysia Mongolia 0.6 0 0 2 0.735 0514 0 37.558 25 1 0 9.1560 10.05657 0.45526 O 5.36 06736 OBS 8.03 0.103 50 1 0 0 3.751 . 2.39 2. 0.582 0 . Myanmar 0 6.92166 7093104772 Nepal 2.000 27068 60926 MYANMAR NEPAL OMAN 0.001 0.001 1 0185 0 CHED 2334 5 O D 3533 1 0 . 1 1 0 1 1 17.26819 17. 23712 20.445 111 0006 Q 3 O . 0253 0453 DAT 302 2173 12.12524 15229 0 Paki Philipines Catar Saudi arabia Singapore Srilanka Syria Taiwan ........ PET sto sto 1000 25.30 14. 0.001 O 2.707 BUR NPL OMN PAK PHL QAT SAU SGP KA SYR OAN THA ARE YEM AUT BEL NG 0.00 0859 SHO 0 0.00 8.018 135 2.IS 0.4315 1041238 0.85 TO 1120 0 15.6164 14.16 15.97244 17.17049 13.53342 14 2014 PIE 0:43 0.83 1 9.61807 1065057533 4.S02755341538 8414 34096 0.0914 1025728 325711 08.40576 397 29335 648 0 733 010 14404 1 9.83599 10,53494 03494840778061759 886893 9.97443 10.907 0.43120 455 05915590199 8.686 181 5.37 0.69437 79 9.65115 10.1373 0.24308 299 0.53466837341 1 9.6666 30.17504 0.25404 0.019 8.62294 5.08 0.64508 999116 8.99411 8.50 0.81 0.10054 884822 10.13265 11.19924 6.64 0.807640521 O 10.29677 162 0.47383 9.15 1.012 9.66806 10.51952041503 7.13 015113 1891957 10.09344 0.58694 7.87383 0.92786 740477 O 10.10478 11.36358 0.5194 10.33 1.09644.47683 0 10 16656 11.35659 0.61581 9.43 104112850953 0 10.27497 113495705177 6.52 0.79052 1 0 00 0.017 0.34) 0.014 0.004 0 1140 9550 25.250 13.79 e O 2346 20 O HE @ O 15.08041 15:22 1 0.778 0738 D D 3 07353 . 4 G.BE 5 O 021728 $ 0.36111 LOVE 413 SO 42.00 to T 0954 30 DB 013 1 1529805 12.67324 1592458 14.85564 34.74529 0.004 0.04 0.000 QATAR SAUDI ARABIA SINGAPORE SRI LANKA SYRIA TAWAN THAILAND UNITED ARABE YEMEN AUSTRIA BELGIUM BULGARIA CYPRUS CZECHOSLOVACIA DENMARK FINLAND FRANCE GERMANY, EAST GERMANY, WEST GREECE HUNGARY ICELAND IRELAND ITALY LUXEMBOURG MALTA NETHERLANDS NORWAY POLAND 1 2 1 1 1 1 . 045 BOTY ONK FIN FRA DDR DEU 0.00 1 0.778 0.718 08 4 4 0:37 4013069 3.04 143 3.07 o 0.50 0.91 D 0 9000 1.004 25 o United arabe Yemen Aus Belgium Bulgaria Cyprus Crechoslovak Denmark Finland France Germany, faut Germany, West Greece Hungary Iceland Ireland Italy Luxembourg Malta Netherlands Norway Poland 55.718 60212 4881 51 48161 OM 0 D.OOS D 2914 O 08 0.712 w HUN 1432 754854 8.75730 $ 0.8815 0756 1 416 $ 0.8957 5 01662 21 11.30 16.06782 17.16103 15 15672 1546639 11.79618 14.11911 16.95595 11 58283 11. SOOD 0 OS 0.00 3 1 1 1 1 1 1 1 1 1 1 10:27478 1140052 0.56257 8.54 0:37672 9.715 10 4435 0.4717 6.73 0.81173 09.1966 10 cm 056812 130 16034 0.47343 7.89 0.92889 09055T 1092842 8.01 0.94068 10.29121131634 051221 62 076638 ! 10.46142115811 0.56091 BS 3052 1 9.70619 10.60226 0.1403 6.9 10.2594 11.27808 0.50914 257 098 0 10.20004 11.45985 0.62991 10 1.30184 9.04059 10.4326 0.69601 14 06 SONO 1990 10 0.00 -0.014 0.000 0.000 0.00 0.035 9.01542 0.22 D O STRO 3499 193 32 28 5. COTO SO IRL ITA LUX MLT NLD NOR POL 1 95 O 0 8.5296 8.7713 03 DES DR 5 20.57855 4 D 4 017272 45 3579 0 . 0 51874 14.56454 0 O DOS 0043 7.3.767 0.111 0.04 50.344 Portugal PORTUGAL ROMANIA 0033 ROM ESP SWE 0 031 0316 1 1 1 1 Spain Sweder Switzerland SUR 0.001 15.14496 1533 15.45381 15.28418 15 064 16. 147 17.15045 16.79 OTTE 001 0.778 0728 1 . 0.72 333 2.914 2516 201 4 373 0:37 O O SWEDEN SWITZERLAND TURKEY UK U.S.S.R. YUGOSLAVIA AUSTRALIA to han man TO Then 3.83 02 ALSAS 5.6132 0.001S 7.80975 10186871764 9.09 1.00412 870045 10.06 0.9842 0.8742 IN BOSS 7.16 05 7.74859 102 103232 157101 6.76 031425 7.9918 12.047147235672 165 02211 7.2017 0.84 0 USSR Yugoslavia 1 0.77 TUR OBR SUN YUG AUS F NEL PNG 01733 0.85556 0.11569 1 9.456 10.21 0.41017 1 8.218 927013 0 10 24 11.00 04683 0 1023 11.19516 0.47964 1 10.34061 11.062403 8.95259 9.69835 0.37288 01015717 10.77 033538 . . 1 9.60136 0 9.27074 10 603 066699 10.30471 11.18595054087 1 917759 8.81572 10.14265 11.26508 0.56171 0 7.3209 73693 0.39801 79001 0 0 47400 41.202 51.51 O 0:37 0 10.399 0.5812 2421 26 1.303 103 0 D . 0.000 0 3. EO 15.37232 12.39767 34.21071 14.38005 5 -32,219 1 1 1 1 0 0.015 Gods 0.00 0.00 0.011 0.192 0.01 0.005 0.01 0.593 0.452 0.931 0.611 0985 0.08 0.008 0.00 2.921 20 0 50 SED 0.015 Newzealand Papua Solomon Tongs Vanuatu Western Samos S100 97 NEW ZEALAND PAPUA N GUINEA SOLOMON TONGA VANLATU WESTERN SAMOA 5 TON VUT WSM 0 5 2.315 3224 3.79 0 21.173 O 0 30.71054 10.8312 0.011 0 . 349 13.633 Please I need to know the comand for stata From Theory to Empirics A central question in development economics is why some nations are rich and other poor? An- swering this question has important implications for development polices, which aim to advance human wellbeing and eliminate poverty. Let's see how economics tackles this question (of course I cannot talk about every economic theory addressing this question here). 2.1 Production Function and Capital endowment The total production in country i depends on labor L, capital, K, and raw materials, R. We use the famous Cobb-Douglas function to model the relationship between production output and inputs. First lets define the value added of production as the value of total output Q minus the value of raw material, R: V = Q - R. Then we write the Cobb-Douglas using V. Vi = K L-a This equation tells us that the value-added measure of output in country i, Vi depends on K and L in country i. a is a positive parameter less than one. Usually, when we compare the economic perforce between countries we use GDP per capita (or value added per capita). Hence, we would like to write the Cobb Douglas in terms of value added per capital. Ki Vi KL L; v; = ko (1) VA where vi = and ki = L Li 1. If equation 1 hods perfectly how would the scatter diagram plotting v against k look like? 2. In reality we know that equation 1 does not hold perfectly. Rewrite equation 1 to include all other variables that might affect v in addition to k. 3. Suppose you have data about v and k, how would you estimate equation 1. 4. Use the dataset hjoines.dta to plot a scatter diagram between v and k. 5. Estimate your model in (3). Interpret the coefficient of k 6. Add the regression line to the scatter figure. Make sure you label the scatter points in the diagram. (use mlabel option). 7. How much investment for capital per capita is needed in Tanzania to be as rich as USA? 8. Could you think of a method to test the normality assumption (u ~ N(0,02)). Hint: obtain from the above regression and plot a histogram for . You might want check the commands: pnormal and qnormal 9. Assumption 5 states that Var(u|X) = E(u2|X) = 02 ( constant variance (homeskdacity)). Could you think of a way to test this empirically. Hint: the distribution of u should not be correlated with X or Y. You might want try the command rufplot. 10. Discuss whether the model can tell why some countries are rich and others poor (hint: does the regression provide causal relationship between v and k). 11. Add human capital to your regression and estimate the model (note: use number of years of education divided by L as a measure of human capital). Mangley ALGERIA ANGOLA 0.053 4 grote 0006 15. 15.27332 14.00 12.9012 0.41 O EMT 0 17 0.2457 021333 024306 s 143 1 CM ON 0.111 0356 EMA 6000 1000 100 1 26 2.43 312 21 2.646 NEO TED HE Noki 1 10 069 047141 170025265116 0109134 641133 176 7.5401005146 0.0938760231 810645 19 054615 1 69208676837 091417 0.0 6530 1 696107ASES 015225 2.00080268116.4571 7.9030 8.6404 0.00 2337510 1 78201 0.4424 3.32 0.0013 7.00 688849 000 136 0.1604698973 17064 5.381 05773260203 1 7.257 031784 02.01.2002 8.3052 50015006541 3.14 0.4201 1 DS BOTSWANA BURKINA FASO BURUNDI CAMEROON CAPE VERDES CENTRAL AIR CHAD COMOROS . 003 Q14 0.001 9000 100 0.220 1481553 1595863 11 BOS 1414141 14.45478 12.05 13.77979 0 RO 1 1 1 2.79 3.100 2.17 3 000 1073 15.00 4 30 116 wan 24 14 $ Comoros O 6.27 0.00 ODT 100 04 0 Core CONGO DOT 0 3.845 334 1 004 O 1000 11 23 0.51 O O O 2.464 21 0 O wbcode wbouw DRA Algeria ADO Angel BEN SWA BFA Burkina Fase BO! Burundi OMR Cameroon CPV Cape Verdes CA CAR TCD Chad Cou COS DE EGY Cert TH Ethiopia GAB Gabon GMB Gambia GHA GIN GNB CV Ivory Coast KEN LSO Lesotho LBR Liberia MDG Madagascar MWI MU MRT Mauritania MUS Mauritius MAR Morocco MOE Morambique NAM Namibia NER Nger O EGYPT ETHIOPIA GABON GAMBIA GHANA GUINEA 0315 OS OG LIVE 2006 LED 0 - 1 1 4 1 1 2016 0.222 0222 02 o O 3955 29 3336 11 257 SEN 067 0 GUINEA IVORY COAST 12.6139 15 61004 141638 12.99862 15.90041 36.13396 13.58411 POS MO 090 0 1222 O KUNTA 1 1 . 0 0.002 5050818 1 0.10731 5 1 0.2755 0019931 5 20663 50 . 10.38128 5035135 1 025672 5 03122 50.11106 5055154 5 1 5 1 0.23328 30.20054 5 0.15191 3 0.5072 1 0.26 3 0.365 5 0.253 2.08 2.524 10 16.80153 812542 0.33805 5.0974 064585 8.43273 1 162177 10.05713071468 22546022 760052 7.447709654 0.17609 04011256 751226 7.5 7.10093 0.21008 122 0.431487.2017 1 7.32935 6.90098 021119 21595031619 72144 7.23673 7.8141029869 0.56 07504 1 8.14367 8.44026 0.1429292846 0.39241 760297 7.597878163 0.15847 0.414067.000 3 7.71105 783589 0.06212 3.51 0.47034 71779 1 7.2735 5.7622 7545 3.97152 0.52218 749678 1 6954 7.07719009142 2.58 0.57 6.54722 7.113 6.72355 02 0.10988 7.19837 1 7464 8.30818 0.41087 251012 0.3346 1 91145 4.59 0.550 0022 3.74085 0.0271507048 0.64412 1 7.21750 602818 0.6032 0.14472 1 8.83613 10 1921 067798 141427 0.45751 770053 O 7049 006562 054 0.02.16 0.005 0. 061 017 0.436 500 0 1 1 0.007 0 . 0 0 3 2393 1 18 0 LESOTHO UBERIA MADAGASCAR MALAWI MALI MAURITANIA MAURITIUS MOROCCO MOZAMBIQUE MAMIA 15647 15.0480 15.01141 13.55016 011 0 D . O 11 20232 0.704 1 1 1 1 1 1 0.66 15 82804 15.83146 0 O 0.001 0.003 003 OM2 0.01 06 0 0012 1154 14 2543 2.400 09 2515 O 0536 NIGER 0 O 20 Nigeria Reunion 4 NGERIA REUNION WWANDA SENEGAL SEYCHELLES SIERRA LEONE 0 0.357 i 1 0.327 0 10 3266 01002 Docs 0.00 0.061 0.003 17.01 12.342 14.93 14.57867 10.2014 14.1847 15.00 16.31631 TE SED 0.64 O REU EWA SEN SYC SI SOM ZA SON SWE TZA TGO TUN o O 2014 -2012 14.772 466 8.395 0.611 -2.13 14043 0.10 10 1097 SOMALIA Senegal Seychelles Sierra Leone Somalia South africa Sudan Swaziland Tanzania Topo 0.32 0.00 0 0.00 1.135 2.701 2.136 2.395 12.65879 03 0308 0.602 0.551 O 1 1 1 1 1 1 1 1 1 1 1 1 LOT 0.006S O O 214 1 7.44511 8.21654061142 019621 66345 16 9.57263 0.2922 191338 0.52439 10 1732245 0.84 011156 7.500 7839 76029292 239 17025 1 34 9.41304 023735 2.22702 0.248.40257 7.72941 6.1593 0.78505 172 0.23048 8.28399 1 7.45231 7.50918 0.06844228781 0.30657 7.0773 O 9.90849040907 4.95 0.631 32 1 7.76558 8.31243 027343 0.91 0.12194 7.37021 1 8.66 9.00675 016853 3.77 0.50515 7.99596 7.02414 7.0657 0.02073 2.23 6. 7.25061 789372 0.32156 213 E6436 8.948429.28947 0.17052 2.48 3.44556 O 7.02369589581 -0.56334 1.92 0.25728 2.05 1 7.05455 656787024324 2:24 0.30016 6.99743 0749617 877629064036 4.35 0.57135628445 7.74836 8.43456 0.341 263 0.35242705284 1 9.5687 9.836 01336 743 08.54757 0 9270 0 10.41442 1131986 0.45272 1037 110116 6604 3 9.11803 97223030043 5.33 0.6703314537 4 016711 5 0.53117 0.2767 1 0.2273 4 . 0.33733 3 0.26178 2 2. 1725 3.171 LIGA 1454251 1471480 15.78421 16.0688 14.04 1523019 0.099 0.001 0.04 0204 0.06 0.006 0 0 1036 28 59 ande 2 ZAR IMS ZWE 2114 0434 CVETO HUO 0 2 O 2492 014 0.865 1 it.i..SHIBIS.............. 0 247 1 MENO 5 0.000 BRB 1 0.739 0.61 O 1000 PEDO 16.37839 SOUTH AFRICA SUDAN SWAZILAND TANZANIA TOGO TUNISIA UGANDA ZARE ZAMBIA DIMLARWE BAHAMAS MARBADOS BELGE CANADA COSTA RICA DOMINICA DOMINICAN REP EL SALVADOR GRENADA GUATEMALA HATI HONDURAS JAMAICA MEXICO NICARAGUA PANAMA PUERTO RICO 4097 471 AN . 3151 CAN 5 5 0.96578 1 054611 0956 0053 5 0.001 0.004 0 1 1 0 1 1 0 1 0.016 0.26 0001 0 1 1 2541 30185 1108 0906 1054 OH w 15 9.341 15.455 18.561 13.75 Zimbabwe Bahamas Barbados Belar Canada Costa rica Dominica Dominican rep El salvador Grenada Guatemala Hati Honduras Jamaica Mexico Nicaragua Panama Puerto rico DUA DOM SLV GRD GTM HTI LEO 0432 14.55682 14 31394 10.59015 14.72302 14.77 14.1977 O 0 0 3.093 0588 0.005 14 19 0.001 0.002 0014 0.00 OD 02571 0863 03128 357.47338 11673 69338 8.91335 895836 0. 35478 7.6053 7.40046010292 160.21708 749234 3.4336 8.73022 014758 3.56 0.47704 7.80844 8.43284 9.45961 051118 4.16 055216 9.63754 10.25586030916 4.42 OST.74955 1 4028 9.07821 0.33547 1.78 0.50652 7.5563 1 9.99013 0.45313 0.7687.74567 1 10 13436 30.65694 0.26129462541 099917 9 TI 0.236 0:434 0544 2017 HIND 7.36 30.3678 1 011783 303361 5 0.43311 3 1 0.433 3 011445 0432 02 DR O 0 1.509 1 1 1 1 1 1 17.000 MEX NIC PAN PRI WHO 3.36 041 116512 1195737 0.001 GO 0.895 1 SET KNA YST TO W USA se NETISCH WE 1 1 STRES SE VICENTE TIDAD TOBAGO USA ARGENTINA BOUVIA BRE CHE COLOMBIA ECUADOR GUYANA PARAGUAY BSS 1 SO 8. $ IEI Swee BRA CHL COL TCU SUSTE 1 1 SEED Gars 0.0 OM 07 TO - NA ON 1723 2007 40.43 47 45 Com Bruder 14005 0913 017 2 . 0:00 . ........ 09 0991 - 11 A BOSELE O 067140 00 PER 12:57 1412 OST 202 74 O 14 Suriname uruguay O TE GEMEE LED VE TO WOO 1 1 1 1 1 0.005 7170 5.0.7187914 2100019 LIRUOWAY VENEZUELA 1 URY VEN SHR BGD 0.49 D 1114413 11912 9.50 10.00 0.3323 9730 0.00 02 2014 0.001 011 0.355 ho OV 9 0 0 0 D 0 15.2 0 1 2012 BANGLADESH BHUTAN . Bangladesh Bhutan ON Hong Kong 1 SEL CHIN 11714 SOS 3422 9.841 26.04 23 TAT . 1612 PE 0 CHINA DO 9 1 1 0 . 0 o o 1 7.66033 0771001516 0802349 220 GION 8.27148.99762 0.36261 05462 30.11774 0.4156 IND ON 709 1000 O O UVO 15 10941 19.57 13.0L716 073 0.004 0.004 22.304 0.017 0.121 0.019 O 3 1191 1457 re re pan 1 0.003 0.956 0 o 6 . 0 0 7.51 0.01 BON 0.4087 . 3.75 as 740739 13 0.4952 1354 10 9:41 108.53 090118 8.40857 0.56731 8.82517 75 0.24 059951 3 2472) 001111 0.48911 1 1 0 IND INDONESIA TRAN MAQ SRAEL JAPAN FOROAN KOREA, AFP KUWAIT LAOS MALAYSIA MONGOLIA 3000 2562 1 om 10 OS 10.1542 0.3572 09.94306 11.06 0.5632 0.5 10.00383 0.20578 1.50321 10.11257 0.0168 09.9411 0.225 0.756 0912 D 0.733 0 0 0 JON KOR KWT LAO MYS MNG 0.037 0.007 1992 . 4.222 0:5545 35.712 0 0 0 14.15036 16.10T 11.42504 16 677 13.50473 14.45495 15.72196 1178818 kuwa ) Laos Malaysia Mongolia 0.6 0 0 2 0.735 0514 0 37.558 25 1 0 9.1560 10.05657 0.45526 O 5.36 06736 OBS 8.03 0.103 50 1 0 0 3.751 . 2.39 2. 0.582 0 . Myanmar 0 6.92166 7093104772 Nepal 2.000 27068 60926 MYANMAR NEPAL OMAN 0.001 0.001 1 0185 0 CHED 2334 5 O D 3533 1 0 . 1 1 0 1 1 17.26819 17. 23712 20.445 111 0006 Q 3 O . 0253 0453 DAT 302 2173 12.12524 15229 0 Paki Philipines Catar Saudi arabia Singapore Srilanka Syria Taiwan ........ PET sto sto 1000 25.30 14. 0.001 O 2.707 BUR NPL OMN PAK PHL QAT SAU SGP KA SYR OAN THA ARE YEM AUT BEL NG 0.00 0859 SHO 0 0.00 8.018 135 2.IS 0.4315 1041238 0.85 TO 1120 0 15.6164 14.16 15.97244 17.17049 13.53342 14 2014 PIE 0:43 0.83 1 9.61807 1065057533 4.S02755341538 8414 34096 0.0914 1025728 325711 08.40576 397 29335 648 0 733 010 14404 1 9.83599 10,53494 03494840778061759 886893 9.97443 10.907 0.43120 455 05915590199 8.686 181 5.37 0.69437 79 9.65115 10.1373 0.24308 299 0.53466837341 1 9.6666 30.17504 0.25404 0.019 8.62294 5.08 0.64508 999116 8.99411 8.50 0.81 0.10054 884822 10.13265 11.19924 6.64 0.807640521 O 10.29677 162 0.47383 9.15 1.012 9.66806 10.51952041503 7.13 015113 1891957 10.09344 0.58694 7.87383 0.92786 740477 O 10.10478 11.36358 0.5194 10.33 1.09644.47683 0 10 16656 11.35659 0.61581 9.43 104112850953 0 10.27497 113495705177 6.52 0.79052 1 0 00 0.017 0.34) 0.014 0.004 0 1140 9550 25.250 13.79 e O 2346 20 O HE @ O 15.08041 15:22 1 0.778 0738 D D 3 07353 . 4 G.BE 5 O 021728 $ 0.36111 LOVE 413 SO 42.00 to T 0954 30 DB 013 1 1529805 12.67324 1592458 14.85564 34.74529 0.004 0.04 0.000 QATAR SAUDI ARABIA SINGAPORE SRI LANKA SYRIA TAWAN THAILAND UNITED ARABE YEMEN AUSTRIA BELGIUM BULGARIA CYPRUS CZECHOSLOVACIA DENMARK FINLAND FRANCE GERMANY, EAST GERMANY, WEST GREECE HUNGARY ICELAND IRELAND ITALY LUXEMBOURG MALTA NETHERLANDS NORWAY POLAND 1 2 1 1 1 1 . 045 BOTY ONK FIN FRA DDR DEU 0.00 1 0.778 0.718 08 4 4 0:37 4013069 3.04 143 3.07 o 0.50 0.91 D 0 9000 1.004 25 o United arabe Yemen Aus Belgium Bulgaria Cyprus Crechoslovak Denmark Finland France Germany, faut Germany, West Greece Hungary Iceland Ireland Italy Luxembourg Malta Netherlands Norway Poland 55.718 60212 4881 51 48161 OM 0 D.OOS D 2914 O 08 0.712 w HUN 1432 754854 8.75730 $ 0.8815 0756 1 416 $ 0.8957 5 01662 21 11.30 16.06782 17.16103 15 15672 1546639 11.79618 14.11911 16.95595 11 58283 11. SOOD 0 OS 0.00 3 1 1 1 1 1 1 1 1 1 1 10:27478 1140052 0.56257 8.54 0:37672 9.715 10 4435 0.4717 6.73 0.81173 09.1966 10 cm 056812 130 16034 0.47343 7.89 0.92889 09055T 1092842 8.01 0.94068 10.29121131634 051221 62 076638 ! 10.46142115811 0.56091 BS 3052 1 9.70619 10.60226 0.1403 6.9 10.2594 11.27808 0.50914 257 098 0 10.20004 11.45985 0.62991 10 1.30184 9.04059 10.4326 0.69601 14 06 SONO 1990 10 0.00 -0.014 0.000 0.000 0.00 0.035 9.01542 0.22 D O STRO 3499 193 32 28 5. COTO SO IRL ITA LUX MLT NLD NOR POL 1 95 O 0 8.5296 8.7713 03 DES DR 5 20.57855 4 D 4 017272 45 3579 0 . 0 51874 14.56454 0 O DOS 0043 7.3.767 0.111 0.04 50.344 Portugal PORTUGAL ROMANIA 0033 ROM ESP SWE 0 031 0316 1 1 1 1 Spain Sweder Switzerland SUR 0.001 15.14496 1533 15.45381 15.28418 15 064 16. 147 17.15045 16.79 OTTE 001 0.778 0728 1 . 0.72 333 2.914 2516 201 4 373 0:37 O O SWEDEN SWITZERLAND TURKEY UK U.S.S.R. YUGOSLAVIA AUSTRALIA to han man TO Then 3.83 02 ALSAS 5.6132 0.001S 7.80975 10186871764 9.09 1.00412 870045 10.06 0.9842 0.8742 IN BOSS 7.16 05 7.74859 102 103232 157101 6.76 031425 7.9918 12.047147235672 165 02211 7.2017 0.84 0 USSR Yugoslavia 1 0.77 TUR OBR SUN YUG AUS F NEL PNG 01733 0.85556 0.11569 1 9.456 10.21 0.41017 1 8.218 927013 0 10 24 11.00 04683 0 1023 11.19516 0.47964 1 10.34061 11.062403 8.95259 9.69835 0.37288 01015717 10.77 033538 . . 1 9.60136 0 9.27074 10 603 066699 10.30471 11.18595054087 1 917759 8.81572 10.14265 11.26508 0.56171 0 7.3209 73693 0.39801 79001 0 0 47400 41.202 51.51 O 0:37 0 10.399 0.5812 2421 26 1.303 103 0 D . 0.000 0 3. EO 15.37232 12.39767 34.21071 14.38005 5 -32,219 1 1 1 1 0 0.015 Gods 0.00 0.00 0.011 0.192 0.01 0.005 0.01 0.593 0.452 0.931 0.611 0985 0.08 0.008 0.00 2.921 20 0 50 SED 0.015 Newzealand Papua Solomon Tongs Vanuatu Western Samos S100 97 NEW ZEALAND PAPUA N GUINEA SOLOMON TONGA VANLATU WESTERN SAMOA 5 TON VUT WSM 0 5 2.315 3224 3.79 0 21.173 O 0 30.71054 10.8312 0.011 0 . 349 13.633 Please I need to know the comand for stata

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Cost Accounting

Authors: Jawahar Lal, Seema Srivastav

6th Edition

9353168384, 978-9353168384

More Books

Students also viewed these Accounting questions