Question
- Give formulas for finding the parents/children based on the value i - Merge the two binomial queues in 6.59 NOTE: a binomial queue is
- Give formulas for finding the parents/children based on the value i - Merge the two binomial queues in 6.59 NOTE: a binomial queue is a forest of binomial trees, where each tree is a unique size - Start from the class provided:
// BinomialQueue class // // CONSTRUCTION: with no parameters or a single item // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // Comparable deleteMin( )--> Return and remove smallest item // Comparable findMin( ) --> Return smallest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // vod merge( rhs ) --> Absord rhs into this heap // ******************ERRORS******************************** // Throws UnderflowException as appropriate
/** * Implements a binomial queue. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */ public final class BinomialQueue
/** * Construct with a single item. */ public BinomialQueue( AnyType item ) { currentSize = 1; theTrees = new BinNode[ 1 ]; theTrees[ 0 ] = new BinNode<>( item, null, null ); }
private void expandTheTrees( int newNumTrees ) { BinNode
theTrees = new BinNode[ newNumTrees ]; for( int i = 0; i < oldNumTrees; i++ ) theTrees[ i ] = old[ i ]; for( int i = oldNumTrees; i < newNumTrees; i++ ) theTrees[ i ] = null; }
/** * Merge rhs into the priority queue. * rhs becomes empty. rhs must be different from this. * @param rhs the other binomial queue. */ public void merge( BinomialQueue
currentSize += rhs.currentSize;
if( currentSize > capacity( ) ) { int newNumTrees = Math.max( theTrees.length, rhs.theTrees.length ) + 1; expandTheTrees( newNumTrees ); }
BinNode
int whichCase = t1 == null ? 0 : 1; whichCase += t2 == null ? 0 : 2; whichCase += carry == null ? 0 : 4;
switch( whichCase ) { case 0: /* No trees */ case 1: /* Only this */ break; case 2: /* Only rhs */ theTrees[ i ] = t2; rhs.theTrees[ i ] = null; break; case 4: /* Only carry */ theTrees[ i ] = carry; carry = null; break; case 3: /* this and rhs */ carry = combineTrees( t1, t2 ); theTrees[ i ] = rhs.theTrees[ i ] = null; break; case 5: /* this and carry */ carry = combineTrees( t1, carry ); theTrees[ i ] = null; break; case 6: /* rhs and carry */ carry = combineTrees( t2, carry ); rhs.theTrees[ i ] = null; break; case 7: /* All three */ theTrees[ i ] = carry; carry = combineTrees( t1, t2 ); rhs.theTrees[ i ] = null; break; } }
for( int k = 0; k < rhs.theTrees.length; k++ ) rhs.theTrees[ k ] = null; rhs.currentSize = 0; }
/** * Return the result of merging equal-sized t1 and t2. */ private BinNode
/** * Insert into the priority queue, maintaining heap order. * This implementation is not optimized for O(1) performance. * @param x the item to insert. */ public void insert( AnyType x ) { merge( new BinomialQueue<>( x ) ); }
/** * Find the smallest item in the priority queue. * @return the smallest item, or throw UnderflowException if empty. */ public AnyType findMin( ) { if( isEmpty( ) ) return null;//throw new UnderflowException( );
return theTrees[ findMinIndex( ) ].element; }
/** * Find index of tree containing the smallest item in the priority queue. * The priority queue must not be empty. * @return the index of tree containing the smallest item. */ private int findMinIndex( ) { int i; int minIndex;
for( i = 0; theTrees[ i ] == null; i++ ) ;
for( minIndex = i; i < theTrees.length; i++ ) if( theTrees[ i ] != null && theTrees[ i ].element.compareTo( theTrees[ minIndex ].element ) < 0 ) minIndex = i;
return minIndex; }
/** * Remove the smallest item from the priority queue. * @return the smallest item, or throw UnderflowException if empty. */ public AnyType deleteMin( ) { if( isEmpty( ) ) return null;//throw new UnderflowException( );
int minIndex = findMinIndex( ); AnyType minItem = theTrees[ minIndex ].element;
BinNode
// Construct H'' BinomialQueue
deletedQueue.currentSize = ( 1 << minIndex ) - 1; for( int j = minIndex - 1; j >= 0; j-- ) { deletedQueue.theTrees[ j ] = deletedTree; deletedTree = deletedTree.nextSibling; deletedQueue.theTrees[ j ].nextSibling = null; }
// Construct H' theTrees[ minIndex ] = null; currentSize -= deletedQueue.currentSize + 1;
merge( deletedQueue );
return minItem; }
/** * Test if the priority queue is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return currentSize == 0; }
/** * Make the priority queue logically empty. */ public void makeEmpty( ) { currentSize = 0; for( int i = 0; i < theTrees.length; i++ ) theTrees[ i ] = null; }
private static class BinNode
BinNode( AnyType theElement, BinNode
AnyType element; // The data in the node BinNode
private static final int DEFAULT_TREES = 1;
private int currentSize; // # items in priority queue private BinNode
/** * Return the capacity. */ private int capacity( ) { return ( 1 << theTrees.length ) - 1; }
public static void main( String [ ] args ) { int numItems = 10000; BinomialQueue
System.out.println( "Starting check." );
for( i = 37; i != 0; i = ( i + 37 ) % numItems ) if( i % 2 == 0 ) h1.insert( i ); else h.insert( i );
h.merge( h1 ); for( i = 1; i < numItems; i++ ) if( h.deleteMin( ) != i ) System.out.println( "Oops! " + i );
System.out.println( "Check done." ); } }
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started