Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

give me a detailed and clear methodology of the given python code in google colab. this code shows thecorrelation to prove wether the hypotheis below

give me a detailed and clear methodology of the given python code in google colab. this code shows thecorrelation to prove wether the hypotheis below iscorrect or not. the methodology should be in standard form like in a research report and also give me a standard flow chart and pseudocode for the code below. Hypothesis: The mean house prices are higher in more populated areas.
A higher population density (people per square km) results in a higher number of crimes committed.
The crime rate is higher in areas with low mean house prices.
Code:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Read data files
house_prices_df = pd.read_excel("MeanHousePricesClean-1.xlsx")
crime_df = pd.read_excel("CrimeClean-1-1.xlsx")
population_df = pd.read_excel("PopulationClean.xlsx")
area_df = pd.read_excel("SuburbAreas-1.xlsx", header=None)
# Transform area_df to long format
area_df.columns = area_df.iloc[0] # Set the first row as the header
area_df = area_df[1:] # Remove the first row from the dataframe
area_df = area_df.set_index('Property').transpose().reset_index()
area_df.columns =['local_government_area', 'area_sq_km']
# Convert 'area_sq_km' to numeric
area_df['area_sq_km']= pd.to_numeric(area_df['area_sq_km'], errors='coerce')
# Rename columns in house_prices_df and crime_df to ensure consistent naming
house_prices_df = house_prices_df.rename(columns={'Year': 'year'})
crime_df = crime_df.rename(columns={'Year': 'year', 'Local Government Area': 'local_government_area',
'Incidents recorded': 'incidents_recorded',
'Crime rate per 100,000 population': 'crime_rate'})
population_df = population_df.rename(columns={'Year': 'year'})
# Function to normalize LGA names
def normalize_lga_names(df, lga_column):
if lga_column in df.columns:
df[lga_column]= df[lga_column].astype(str).str.strip().str.replace('Shire','').str.replace('City','').str.strip()
return df
# Normalize LGA names in all relevant DataFrames
house_prices_df = normalize_lga_names(house_prices_df, 'local_government_area')
crime_df = normalize_lga_names(crime_df, 'local_government_area')
for col in population_df.columns[1:]:
population_df = normalize_lga_names(population_df, col)
area_df = normalize_lga_names(area_df, 'local_government_area')
# Transform house_prices_df to long format
house_prices_long_df = pd.melt(house_prices_df, id_vars=['year'], var_name='local_government_area', value_name='house_price')
# Normalize 'local_government_area' column in house_prices_long_df
house_prices_long_df = normalize_lga_names(house_prices_long_df, 'local_government_area')
# Transform population_df to long format
population_long_df = pd.melt(population_df, id_vars=['year'], var_name='local_government_area', value_name='population')
# Normalize 'local_government_area' column in population_long_df
population_long_df = normalize_lga_names(population_long_df, 'local_government_area')
# Merge DataFrames
merged_df = pd.merge(crime_df, population_long_df, on=['year', 'local_government_area'])
merged_df = pd.merge(merged_df, house_prices_long_df, on=['year', 'local_government_area'])
merged_df = pd.merge(merged_df, area_df, on='local_government_area', how='left')
# Convert 'population' to numeric
merged_df['population']= pd.to_numeric(merged_df['population'], errors='coerce')
# Calculate population density
merged_df['population_density']= merged_df['population']/ merged_df['area_sq_km']
# Calculate correlations
correlation_house_prices_population_density = merged_df['house_price'].corr(merged_df['population_density'])
correlation_crime_rate_house_prices = merged_df['crime_rate'].corr(merged_df['house_price'])
correlation_crime_rate_population_density = merged_df['crime_rate'].corr(merged_df['population_density'])
# Print correlations
print("Correlation between house prices and population density:", correlation_house_prices_population_density)
print("Correlation between crime rate and house prices:", correlation_crime_rate_house_prices)
print("Correlation between crime rate and population density:", correlation_crime_rate_population_density)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Databases Demystified

Authors: Andrew Oppel

1st Edition

0072253649, 9780072253641

More Books

Students also viewed these Databases questions

Question

Who responds to your customers complaint letters?

Answered: 1 week ago