Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

__global__ void SobelGPUShared(float *image, int height, int width, float *x_matrix, float *y_matrix, float *output) { extern __shared__ float arr[]; int i = blockIdx.x*blockDim.x+threadIdx.x; int j

__global__

void SobelGPUShared(float *image, int height, int width, float *x_matrix,

float *y_matrix, float *output) {

extern __shared__ float arr[];

int i = blockIdx.x*blockDim.x+threadIdx.x;

int j = blockIdx.y*blockDim.y+threadIdx.y;

//arr[i*j] = image[i*j];

if(i < height && j < width)

{

float x_grad=0;

x_grad += x_matrix[0 * MATRIX_DIM + 0] *

GetValidPixelValue(image, height, width, i - 1, j - 1);

x_grad += x_matrix[0 * MATRIX_DIM + 2] *

GetValidPixelValue(image, height, width, i - 1, j + 1);

x_grad += x_matrix[1 * MATRIX_DIM + 0] *

GetValidPixelValue(image, height, width, i, j - 1);

x_grad += x_matrix[1 * MATRIX_DIM + 2] *

GetValidPixelValue(image, height, width, i, j + 1);

x_grad += x_matrix[2 * MATRIX_DIM + 0] *

GetValidPixelValue(image, height, width, i + 1, j - 1);

x_grad += x_matrix[2 * MATRIX_DIM + 2] *

GetValidPixelValue(image, height, width, i + 1, j + 1);

__syncthreads();

float y_grad = 0;

y_grad += y_matrix[0 * MATRIX_DIM + 0] *

GetValidPixelValue(image, height, width, i - 1, j - 1);

y_grad += y_matrix[0 * MATRIX_DIM + 1] *

GetValidPixelValue(image, height, width, i - 1, j);

y_grad += y_matrix[0 * MATRIX_DIM + 2] *

GetValidPixelValue(image, height, width, i - 1, j + 1);

y_grad += y_matrix[2 * MATRIX_DIM + 0] *

GetValidPixelValue(image, height, width, i + 1, j - 1);

y_grad += y_matrix[2 * MATRIX_DIM + 1] *

GetValidPixelValue(image, height, width, i + 1, j);

y_grad += y_matrix[2 * MATRIX_DIM + 2] *

GetValidPixelValue(image, height, width, i + 1, j + 1);

__syncthreads();

float magnitude =

sqrt(x_grad / 8 * x_grad / 8 +

y_grad / 8 * y_grad / 8); // normalize gradients by dividing by 8

if (magnitude > 1) { // clamp to 1

output[i * width + j] = 1;

} else if (magnitude > THRESHOLD) {

output[i * width + j] = magnitude;

} else {

output[i * width + j] = 0;

}

// Implement this function, define a GPU kernel above it

}

}

Given this Cuda C++ function, how can you divide the image array into tiles that will fit in shared memory? You only have to worry about the parallelization part and not the actual sobel filter calculations that are being done.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Concepts

Authors: David M. Kroenke

1st Edition

0130086509, 978-0130086501

More Books

Students also viewed these Databases questions