Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Hello, I study accounting and I have couple practice questions to be answered. I would appreciate it if you could check and let me know
Hello, I study accounting and I have couple practice questions to be answered. I would appreciate it if you could check and let me know if you could help me out on these and I have more. I look forward to hearing from you at your earliest convenience.
Please see attached file for practice questions.
Practice - 1 Tony Hitchcock is 43 years old today and he wishes to accumulate $512,000 by his 65th birthday so he can retire to his summer place on Lake Hopatcong. He wishes to accumulate this amount by making equal deposits on his 43th through his 64th birthdays. What annual deposit must Tony make if the fund will earn 12% interest compounded annually? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Annual deposit Please show your calculations. Wildhorse Inc. loans money to John Kruk Corporation in the amount of $810,000. Wildhorse accepts an 8% note due in 6 years with interest payable semiannually. After 2 years (and receipt of interest for 2 years), Wildhorse needs money and therefore sells the note to Chicago National Bank, which demands interest on the note of 10% compounded semiannually. What is the amount Wildhorse will receive on the sale of the note? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Amount received on sale of note Please show your calculations. Wildhorse Inc. wishes to accumulate $1,268,900 by December 31, 2027, to retire bonds outstanding. The company deposits $198,200 on December 31, 2017, which will earn interest at 10% compounded quarterly, to help in the retirement of this debt. In addition, the company wants to know how much should be deposited at the end of each quarter for 10 years to ensure that $1,268,900 is available at the end of 2027. (The quarterly deposits will also earn at a rate of 10%, compounded quarterly.) (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Annuity of value of quarterly deposits Please show your calculations. Practice - 2 Using the appropriate interest table, compute the present values of the following periodic amounts due at the end of the designated periods. Open References to view factor tables $50,930 receivable at the end of each period for 9 periods compounded at 12%. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Present value Please show your calculations. Open References to view factor tables $50,930 payments to be made at the end of each period for 18 periods at 9%. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Present value Please show your calculations. Open References to view factor tables $50,930 payable at the end of the seventh, eighth, ninth, and tenth periods at 12%. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Present value Please show your calculations. Practice - 3 Cullumber Excavating Inc. is purchasing a bulldozer. The equipment has a price of $103,000. The manufacturer has offered a payment plan that would allow Cullumber to make 9 equal annual payments of $19,330.92, with the first payment due one year after the purchase. How much total interest will Cullumber pay on this payment plan? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Total interest Please show your calculations. Cullumber could borrow $103,000 from its bank to finance the purchase at an annual rate of 11%. Open References to view factor tables Should Cullumber borrow from the bank or use the manufacturer's payment plan to pay for the equipment? (Round answer to 0 decimal places, e.g. 7%.) Manufacturer's rate % Please show your calculations. Practice - 4 Grouper Inc., a manufacturer of steel school lockers, plans to purchase a new punch press for use in its manufacturing process. After contacting the appropriate vendors, the purchasing department received differing terms and options from each vendor. The Engineering Department has determined that each vendor's punch press is substantially identical and each has a useful life of 20 years. In addition, Engineering has estimated that required year-end maintenance costs will be $1,070 per year for the first 5 years, $2,070 per year for the next 10 years, and $3,070 per year for the last 5 years. Following is each vendor's sales package. Vendor A: $59,950 cash at time of delivery and 10 year-end payments of $17,830 each. Vendor A offers all its customers the right to purchase at the time of sale a separate 20-year maintenance service contract, under which Vendor A will perform all year-end maintenance at a one-time initial cost of $10,390. Vendor B: Forty semiannual payments of $10,120 each, with the first installment due upon delivery. Vendor B will perform all year-end maintenance for the next 20 years at no extra charge. Vendor C: Full cash price of $139,500 will be due upon delivery. Assuming that both Vendors A and B will be able to perform the required year-end maintenance, that Grouper's cost of funds is 10%, and the machine will be purchased on January 1, compute the following: Open References to view factor tables The present value of the cash flows for vendor A. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) The present value of the cash outflows for this option is $ The present value of the cash flows for vendor B. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) The present value of the cash outflows for this option is $ The present value of the cash flows for vendor C. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) The present value of the cash outflows for this option is $ From which vendor should the press be purchased? The press should be purchased from Practice - 5 Open References to view factor tables How much must the balance of the fund equal on June 30, 2020, in order for Newman to satisfy his objective? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Balance of the fund equal on June 30, 2020 Open References to view factor tables What are each of Newman's contributions to the fund? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Newman's contributions to the fund References CLOSE INTEREST TABLES AND THEIR CONTENTS 1.FUTURE VALUE OF 1 TABLE. Contains the amounts to which 1 will accumulate if deposited now at a specified rate and left for a specified number of periods (Table 6.1). Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.06000 2 1.0404 0 1.0506 3 1.0609 0 1.0816 0 1.10250 1.12360 3 1.0612 1 1.0768 9 1.0927 3 1.1248 6 1.15763 1.19102 4 1.0824 3 1.1038 1 1.1255 1 1.1698 6 1.21551 1.26248 5 1.1040 8 1.1314 1 1.1592 7 1.2166 5 1.27628 1.33823 6 1.1261 6 1.1596 9 1.1940 5 1.2653 2 1.34010 1.41852 7 1.1486 9 1.1886 9 1.2298 7 1.3159 3 1.40710 1.50363 8 1.1716 6 1.2184 0 1.2667 7 1.3685 7 1.47746 1.59385 9 1.1950 9 1.2488 6 1.3047 7 1.4233 1 1.55133 1.68948 10 1.2189 9 1.2800 8 1.3439 2 1.4802 4 1.62889 1.79085 11 1.2433 1.3120 1.3842 1.5394 1.71034 1.89830 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.06000 7 9 3 5 12 1.2682 4 1.3448 9 1.4257 6 1.6010 3 1.79586 2.01220 13 1.2936 1 1.3785 1 1.4685 3 1.6650 7 1.88565 2.13293 14 1.3194 8 1.4129 7 1.5125 9 1.7316 8 1.97993 2.26090 15 1.3458 7 1.4483 0 1.5579 7 1.8009 4 2.07893 2.39656 16 1.3727 9 1.4845 1 1.6047 1 1.8729 8 2.18287 2.54035 17 1.4002 4 1.5216 2 1.6528 5 1.9479 0 2.29202 2.69277 18 1.4282 5 1.5596 6 1.7024 3 2.0258 2 2.40662 2.85434 19 1.4568 1 1.5986 5 1.7535 1 2.1068 5 2.52695 3.02560 20 1.4859 5 1.6386 2 1.8061 1 2.1911 2 2.65330 3.20714 21 1.5156 7 1.6795 8 1.8602 9 2.2787 7 2.78596 3.39956 22 1.5459 8 1.7215 7 1.9161 0 2.3699 2 2.92526 3.60354 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.06000 23 1.5769 0 1.7646 1 1.9735 9 2.4647 2 3.07152 3.81975 24 1.6084 4 1.8087 3 2.0327 9 2.5633 0 3.22510 4.04893 25 1.6406 1 1.8539 4 2.0937 8 2.6658 4 3.38635 4.29187 26 1.6734 2 1.9002 9 2.1565 9 2.7724 7 3.55567 4.54938 27 1.7068 9 1.9478 0 2.2212 9 2.8833 7 3.73346 4.82235 28 1.7410 2 1.9965 0 2.2879 3 2.9987 0 3.92013 5.11169 29 1.7758 4 2.0464 1 2.3565 7 3.1186 5 4.11614 5.41839 30 1.8113 6 2.0975 7 2.4272 6 3.2434 0 4.32194 5.74349 31 1.8475 9 2.1500 1 2.5000 8 3.3731 3 4.53804 6.08810 32 1.8845 4 2.2037 6 2.5750 8 3.5080 6 4.76494 6.45339 33 1.9222 3 2.2588 5 2.6523 4 3.6483 8 5.00319 6.84059 34 1.9606 8 2.3153 2 2.7319 1 3.7943 2 5.25335 7.25103 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.06000 35 1.9998 9 2.3732 1 2.8138 6 3.9460 9 5.51602 7.68609 36 2.0398 9 2.4325 4 2.8982 8 4.1039 3 5.79182 8.14725 37 2.0806 9 2.4933 5 2.9852 3 4.2680 9 6.08141 8.63609 38 2.1223 0 2.5556 8 3.0747 8 4.4388 1 6.38548 9.15425 39 2.1647 4 2.6195 7 3.1670 3 4.6163 7 6.70475 9.70351 40 2.2080 4 2.6850 6 3.2620 4 4.8010 2 7.03999 10.28572 8% 9% 10% 11% 12% 15% (n) Periods 1.08000 1.0900 0 1.1000 0 1.1100 0 1.1200 0 1.15000 1 1.16640 1.1881 0 1.2100 0 1.2321 0 1.2544 0 1.32250 2 1.25971 1.2950 3 1.3310 0 1.3676 3 1.4049 3 1.52088 3 1.36049 1.4115 8 1.4641 0 1.5180 7 1.5735 2 1.74901 4 1.46933 1.5386 2 1.6105 1 1.6850 6 1.7623 4 2.01136 5 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.58687 1.6771 0 1.7715 6 1.8704 1 1.9738 2 2.31306 6 1.71382 1.8280 4 1.9487 2 2.0761 6 2.2106 8 2.66002 7 1.85093 1.9925 6 2.1435 9 2.3045 4 2.4759 6 3.05902 8 1.99900 2.1718 9 2.3579 5 2.5580 3 2.7730 8 3.51788 9 2.15892 2.3673 6 2.5937 4 2.8394 2 3.1058 5 4.04556 10 2.33164 2.5804 3 2.8531 2 3.1517 6 3.4785 5 4.65239 11 2.51817 2.8126 7 3.1384 3 3.4984 5 3.8959 8 5.35025 12 2.71962 3.0658 1 3.4522 7 3.8832 8 4.3634 9 6.15279 13 2.93719 3.3417 3 3.7975 0 4.3104 4 4.8871 1 7.07571 14 3.17217 3.6424 8 4.1772 5 4.7845 9 5.4735 7 8.13706 15 3.42594 3.9703 1 4.5949 7 5.3108 9 6.1303 9 9.35762 16 3.70002 4.3276 3 5.0544 7 5.8950 9 6.8660 4 10.7612 6 17 1.06000 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 3.99602 4.7171 2 5.5599 2 6.5435 5 7.6899 7 12.3754 5 18 4.31570 5.1416 6 6.1159 1 7.2633 4 8.6127 6 14.2317 7 19 4.66096 5.6044 1 6.7275 0 8.0623 1 9.6462 9 16.3665 4 20 5.03383 6.1088 1 7.4002 5 8.9491 7 10.803 85 18.8215 2 21 5.43654 6.6586 0 8.1402 8 9.9335 7 12.100 31 21.6447 5 22 5.87146 7.2578 7 8.9543 0 11.026 27 13.552 35 24.8914 6 23 6.34118 7.9110 8 9.8497 3 12.239 16 15.178 63 28.6251 8 24 6.84847 8.6230 8 10.834 71 13.585 46 17.000 00 32.9189 5 25 7.39635 9.3991 6 11.918 18 15.079 86 19.040 07 37.8568 0 26 7.98806 10.245 08 13.109 99 16.738 65 21.324 88 43.5353 2 27 8.62711 11.167 14 14.420 99 18.579 90 23.883 87 50.0656 1 28 9.31727 12.172 18 15.863 09 20.623 69 26.749 93 57.5754 5 29 1.06000 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 10.06266 13.267 68 17.449 40 22.892 30 29.959 92 66.2117 7 30 10.86767 14.461 77 19.194 34 25.410 45 33.555 11 76.1435 4 31 11.73708 15.763 33 21.113 78 28.205 60 37.581 73 87.5650 7 32 12.67605 17.182 03 23.225 15 31.308 21 42.091 53 100.699 83 33 13.69013 18.728 41 25.547 67 34.752 12 47.142 52 115.804 80 34 14.78534 20.413 97 28.102 44 38.574 85 52.799 62 133.175 52 35 15.96817 22.251 23 30.912 68 42.818 08 59.135 57 153.151 85 36 17.24563 24.253 84 34.003 95 47.528 07 66.231 84 176.124 63 37 18.62528 26.436 68 37.404 34 52.756 16 74.179 66 202.543 32 38 20.11530 28.815 98 41.144 79 58.559 34 83.081 22 232.924 82 39 21.72452 31.409 42 45.259 26 65.000 87 93.050 97 267.863 55 40 1.06000 2.PRESENT VALUE OF 1 TABLE. Contains the amounts that must be deposited now at a specified rate of interest to equal 1 at the end of a specified number of periods (Table 6.2). Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 2 . 9611 7 . 9518 1 . 9426 0 . 9245 6 . 9070 3 .89000 3 . 9423 2 . 9286 0 . 9151 4 . 8890 0 . 8638 4 .83962 4 . 9238 5 . 9059 5 . 8884 9 . 8548 0 . 8227 0 .79209 5 . 9057 3 . 8838 5 . 8626 1 . 8219 3 . 7835 3 .74726 6 . 8879 7 . 8623 0 . 8374 8 . 7903 1 . 7462 2 .70496 7 . 8705 6 . 8412 7 . 8130 9 . 7599 2 . 7106 8 .66506 8 . 8534 9 . 8207 5 . 7894 1 . 7306 9 . 6768 4 .62741 9 . 8367 6 . 8007 3 . 7664 2 . 7025 9 . 6446 1 .59190 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 10 . 8203 5 . 7812 0 . 7440 9 . 6755 6 . 6139 1 .55839 11 . 8042 6 . 7621 4 . 7224 2 . 6495 8 . 5846 8 .52679 12 . 7884 9 . 7435 6 . 7013 8 . 6246 0 . 5568 4 .49697 13 . 7730 3 . 7254 2 . 6809 5 . 6005 7 . 5303 2 .46884 14 . 7578 8 . 7077 3 . 6611 2 . 5774 8 . 5050 7 .44230 15 . 7430 1 . 6904 7 . 6418 6 . 5552 6 . 4810 2 .41727 16 . 7284 5 . 6736 2 . 6231 7 . 5339 1 . 4581 1 .39365 17 . 7141 6 . 6572 0 . 6050 2 . 5133 7 . 4363 0 .37136 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 18 . 7001 6 . 6411 7 . 5873 9 . 4936 3 . 4155 2 .35034 19 . 6864 3 . 6255 3 . 5702 9 . 4746 4 . 3957 3 .33051 20 . 6729 7 . 6102 7 . 5536 8 . 4563 9 . 3768 9 .31180 21 . 6597 8 . 5953 9 . 5375 5 . 4388 3 . 3589 4 .29416 22 . 6468 4 . 5808 6 . 5218 9 . 4219 6 . 3418 5 .27751 23 . 6341 6 . 5667 0 . 5066 9 . 4057 3 . 3255 7 .26180 24 . 6217 2 . 5528 8 . 4919 3 . 3901 2 . 3100 7 .24698 25 . 6095 3 . 5393 9 . 4776 1 . 3751 2 . 2953 0 .23300 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 26 . 5975 8 . 5262 3 . 4636 9 . 3606 9 . 2812 4 .21981 27 . 5858 6 . 5134 0 . 4501 9 . 3468 2 . 2678 5 .20737 28 . 5743 7 . 5008 8 . 4370 8 . 3334 8 . 2550 9 .19563 29 . 5631 1 . 4886 6 . 4243 5 . 3206 5 . 2429 5 .18456 30 . 5520 7 . 4767 4 . 4119 9 . 3083 2 . 2313 8 .17411 31 . 5412 5 . 4651 1 . 3999 9 . 2964 6 . 2203 6 .16425 32 . 5306 3 . 4537 7 . 3883 4 . 2850 6 . 2098 7 .15496 33 . 5202 3 . 4427 0 . 3770 3 . 2740 9 . 1998 7 .14619 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 34 . 5100 3 . 4319 1 . 3660 4 . 2635 5 . 1903 5 .13791 35 . 5000 3 . 4213 7 . 3553 8 . 2534 2 . 1812 9 .13011 36 . 4902 2 . 4110 9 . 3450 3 . 2436 7 . 1726 6 .12274 37 . 4806 1 . 4010 7 . 3349 8 . 2343 0 . 1644 4 .11579 38 . 4711 9 . 3912 8 . 3252 3 . 2252 9 . 1566 1 .10924 39 . 4619 5 . 3817 4 . 3157 5 . 2166 2 . 1491 5 .10306 40 . 4528 9 . 3724 3 . 3065 6 . 2082 9 . 1420 5 .09722 8% 9% 10% 11% 12% 15% (n) Periods .92593 . 9174 3 . 9090 9 . 9009 0 . 8928 6 . 8695 7 1 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .85734 . 8416 8 . 8264 5 . 8116 2 . 7971 9 . 7561 4 2 .79383 . 7721 8 . 7513 2 . 7311 9 . 7117 8 . 6575 2 3 .73503 . 7084 3 . 6830 1 . 6587 3 . 6355 2 . 5717 5 4 .68058 . 6499 3 . 6209 2 . 5934 5 . 5674 3 . 4971 8 5 .63017 . 5962 7 . 5644 7 . 5346 4 . 5066 3 . 4323 3 6 .58349 . 5470 3 . 5131 6 . 4816 6 . 4523 5 . 3759 4 7 .54027 . 5018 7 . 4665 1 . 4339 3 . 4038 8 . 3269 0 8 .50025 . 4604 3 . 4241 0 . 3909 2 . 3606 1 . 2842 6 9 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .46319 . 4224 1 . 3855 4 . 3521 8 . 3219 7 . 2471 9 10 .42888 . 3875 3 . 3504 9 . 3172 8 . 2874 8 . 2149 4 11 .39711 . 3555 4 . 3186 3 . 2858 4 . 2566 8 . 1869 1 12 .36770 . 3261 8 . 2896 6 . 2575 1 . 2291 7 . 1625 3 13 .34046 . 2992 5 . 2633 3 . 2319 9 . 2046 2 . 1413 3 14 .31524 . 2745 4 . 2393 9 . 2090 0 . 1827 0 . 1228 9 15 .29189 . 2518 7 . 2176 3 . 1882 9 . 1631 2 . 1068 7 16 .27027 . 2310 7 . 1978 5 . 1696 3 . 1456 4 . 0929 3 17 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .25025 . 2119 9 . 1798 6 . 1528 2 . 1300 4 . 0808 1 18 .23171 . 1944 9 . 1635 1 . 1376 8 . 1161 1 . 0702 7 19 .21455 . 1784 3 . 1486 4 . 1240 3 . 1036 7 . 0611 0 20 .19866 . 1637 0 . 1351 3 . 1117 4 . 0925 6 . 0531 3 21 .18394 . 1501 8 . 1228 5 . 1006 7 . 0826 4 . 0462 0 22 .17032 . 1377 8 . 1116 8 . 0906 9 . 0737 9 . 0401 7 23 .15770 . 1264 1 . 1015 3 . 0817 0 . 0658 8 . 0349 3 24 .14602 . 1159 7 . 0923 0 . 0736 1 . 0588 2 . 0303 8 25 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .13520 . 1063 9 . 0839 1 . 0663 1 . 0525 2 . 0264 2 26 .12519 . 0976 1 . 0762 8 . 0597 4 . 0468 9 . 0229 7 27 .11591 . 0895 5 . 0693 4 . 0538 2 . 0418 7 . 0199 7 28 .10733 . 0821 6 . 0630 4 . 0484 9 . 0373 8 . 0173 7 29 .09938 . 0753 7 . 0573 1 . 0436 8 . 0333 8 . 0151 0 30 .09202 . 0691 5 . 0521 0 . 0393 5 . 0298 0 . 0131 3 31 .08520 . 0634 4 . 0473 6 . 0354 5 . 0266 1 . 0114 2 32 .07889 . 0582 0 . 0430 6 . 0319 4 . 0237 6 . 0099 3 33 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .07305 . 0534 0 . 0391 4 . 0287 8 . 0212 1 . 0086 4 34 .06763 . 0489 9 . 0355 8 . 0259 2 . 0189 4 . 0075 1 35 .06262 . 0449 4 . 0323 5 . 0233 5 . 0169 1 . 0065 3 36 .05799 . 0412 3 . 0294 1 . 0210 4 . 0151 0 . 0056 8 37 .05369 . 0378 3 . 0267 4 . 0189 6 . 0134 8 . 0049 4 38 .04971 . 0347 0 . 0243 0 . 0170 8 . 0120 4 . 0042 9 39 .04603 . 0318 4 . 0221 0 . 0153 8 . 0107 5 . 0037 3 40 3.FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 TABLE. Contains the amounts to which periodic rents of 1 will accumulate if the payments (rents) are invested at the end of each period at a specified rate of interest for a specified number of periods (Table 6.3). Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 2 2.02000 2.02500 2.03000 2.04000 2.05000 2.06000 3 3.06040 3.07563 3.09090 3.12160 3.15250 3.18360 4 4.12161 4.15252 4.18363 4.24646 4.31013 4.37462 5 5.20404 5.25633 5.30914 5.41632 5.52563 5.63709 6 6.30812 6.38774 6.46841 6.63298 6.80191 6.97532 7 7.43428 7.54743 7.66246 7.89829 8.14201 8.39384 8 8.58297 8.73612 8.89234 9.21423 9.54911 9.89747 9 9.75463 9.95452 10.1591 1 10.5828 0 11.02656 11.49132 10 10.9497 2 11.2033 8 11.4633 8 12.0061 1 12.57789 13.18079 11 12.1687 2 12.4834 7 12.8078 0 13.4863 5 14.20679 14.97164 12 13.4120 9 13.7955 5 14.1920 3 15.0258 1 15.91713 16.86994 13 14.6803 3 15.1404 4 15.6177 9 16.6268 4 17.71298 18.88214 14 15.9739 4 16.5189 5 17.0863 2 18.2919 1 19.59863 21.01507 15 17.2934 2 17.9319 3 18.5989 1 20.0235 9 21.57856 23.27597 16 18.6392 9 19.3802 2 20.1568 8 21.8245 3 23.65749 25.67253 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 17 20.0120 7 20.8647 3 21.7615 9 23.6975 1 25.84037 28.21288 18 21.4123 1 22.3863 5 23.4144 4 25.6454 1 28.13238 30.90565 19 22.8405 6 23.9460 1 25.1168 7 27.6712 3 30.53900 33.75999 20 24.2973 7 25.5446 6 26.8703 7 29.7780 8 33.06595 36.78559 21 25.7833 2 27.1832 7 28.6764 9 31.9692 0 35.71925 39.99273 22 27.2989 8 28.8628 6 30.5367 8 34.2479 7 38.50521 43.39229 23 28.8449 6 30.5844 3 32.4528 8 36.6178 9 41.43048 46.99583 24 30.4218 6 32.3490 4 34.4264 7 39.0826 0 44.50200 50.81558 25 32.0303 0 34.1577 6 36.4592 6 41.6459 1 47.72710 54.86451 26 33.6709 1 36.0117 1 38.5530 4 44.3117 4 51.11345 59.15638 27 35.3443 2 37.9120 0 40.7096 3 47.0842 1 54.66913 63.70577 28 37.0512 1 39.8598 0 42.9309 2 49.9675 8 58.40258 68.52811 29 38.7922 41.8563 45.2188 52.9662 62.32271 73.63980 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 1 1.00000 1.00000 1.00000 1.00000 3 0 5 9 30 40.5680 8 43.9027 0 47.5754 2 31 42.3794 4 46.0002 7 32 44.2270 3 33 6% 1.00000 1.00000 56.0849 4 66.43885 79.05819 50.0026 8 59.3283 4 70.76079 84.80168 48.1502 8 52.5027 6 62.7014 7 75.29883 90.88978 46.1115 7 50.3540 3 55.0778 4 66.2095 3 80.06377 97.34316 34 48.0338 0 52.6128 9 57.7301 8 69.8579 1 85.06696 104.1837 6 35 49.9944 8 54.9282 1 60.4620 8 73.6522 2 90.32031 111.4347 8 36 51.9943 7 57.3014 1 63.2759 4 77.5983 1 95.83632 119.1208 7 37 54.0342 5 59.7339 5 66.1742 2 81.7022 5 101.6281 4 127.2681 2 38 56.1149 4 62.2273 0 69.1594 5 85.9703 4 107.7095 5 135.9042 1 39 58.2372 4 64.7829 8 72.2342 3 90.4091 5 114.0950 2 145.0584 6 40 60.4019 8 67.4025 5 75.4012 6 95.0255 2 120.7997 7 154.7619 7 8% 9% 10% 11% 12% 15% (n) Periods Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1 2.08000 2.09000 2.10000 2.11000 2.12000 2.15000 2 3.24640 3.27810 3.31000 3.34210 3.37440 3.47250 3 4.50611 4.57313 4.64100 4.70973 4.77933 4.99338 4 5.86660 5.98471 6.10510 6.22780 6.35285 6.74238 5 7.33592 7.52334 7.71561 7.91286 8.11519 8.75374 6 8.92280 9.20044 9.48717 9.78327 10.0890 1 11.06680 7 10.63663 11.0284 7 11.4358 9 11.8594 3 12.2996 9 13.72682 8 12.48756 13.0210 4 13.5794 8 14.1639 7 14.7756 6 16.78584 9 14.48656 15.1929 3 15.9374 3 16.7220 1 17.5487 4 20.30372 10 16.64549 17.5602 9 18.5311 7 19.5614 3 20.6545 8 24.34928 11 18.97713 20.1407 2 21.3842 8 22.7131 9 24.1331 3 29.00167 12 21.49530 22.9533 9 24.5227 1 26.2116 4 28.0291 1 34.35192 13 24.21492 26.0191 9 27.9749 8 30.0949 2 32.3926 0 40.50471 14 27.15211 29.3609 31.7724 34.4053 37.2797 47.58041 15 1.00000 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 1 1.00000 1.00000 1.00000 1.00000 2 8 6 2 30.32428 33.0034 0 35.9497 3 39.1899 5 42.7532 8 55.71747 16 33.75023 36.9737 1 40.5447 0 44.5008 4 48.8836 7 65.07509 17 37.45024 41.3013 4 45.5991 7 50.3959 3 55.7497 2 75.83636 18 41.44626 46.0184 6 51.1590 9 56.9394 9 63.4396 8 88.21181 19 45.76196 51.1601 2 57.2750 0 64.2028 3 72.0524 4 102.4435 8 20 50.42292 56.7645 3 64.0025 0 72.2651 4 81.6987 4 118.8101 2 21 55.45676 62.8733 4 71.4027 5 81.2143 1 92.5025 8 137.6316 4 22 60.89330 69.5319 4 79.5430 2 91.1478 8 104.602 89 159.2763 8 23 66.76476 76.7898 1 88.4973 3 102.174 15 118.155 24 184.1678 4 24 73.10594 84.7009 0 98.3470 6 114.413 31 133.333 87 212.7930 2 25 79.95442 93.3239 8 109.181 77 127.998 77 150.333 93 245.7119 7 26 87.35077 102.723 14 121.099 94 143.078 64 169.374 01 283.5687 7 27 1.00000 6% 1.00000 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.00000 1.00000 1.00000 1.00000 1.00000 95.33883 112.968 22 134.209 94 159.817 29 190.698 89 327.1040 8 28 103.9659 4 124.135 36 148.630 93 178.397 19 214.582 75 377.1696 9 29 113.2832 1 136.307 54 164.494 02 199.020 88 241.332 68 434.7451 5 30 123.3458 7 149.575 22 181.943 43 221.913 17 271.292 61 500.9569 2 31 134.2135 4 164.036 99 201.137 77 247.323 62 304.847 72 577.1004 6 32 145.9506 2 179.800 32 222.251 54 275.529 22 342.429 45 644.6655 3 33 158.6266 7 196.982 34 245.476 70 306.837 44 384.520 98 765.3653 5 34 172.3168 0 215.710 76 271.024 37 341.589 55 431.663 50 881.1701 6 35 187.1021 5 236.124 72 299.126 81 380.164 41 484.463 12 1014.345 68 36 203.0703 2 258.375 95 330.039 49 422.982 49 543.598 69 1167.497 53 37 220.3159 5 282.629 78 364.043 43 470.510 56 609.830 53 1343.622 16 38 238.9412 2 309.066 46 401.447 78 523.266 73 684.010 20 1546.165 49 39 259.0565 337.882 442.592 581.826 767.091 1779.090 40 1.00000 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 1 1.00000 1.00000 1.00000 1.00000 1.00000 45 56 07 42 31 2 5% 6% 1.00000 4.PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 TABLE. Contains the amounts that must be deposited now at a specified rate of interest to permit withdrawals of 1 at the endof regular periodic intervals for the specified number of periods (Table 6.4). Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 .94340 2 1.9415 6 1.9274 2 1.9134 7 1.8860 9 1.8594 1 1.83339 3 2.8838 8 2.8560 2 2.8286 1 2.7750 9 2.7232 5 2.67301 4 3.8077 3 3.7619 7 3.7171 0 3.6299 0 3.5459 5 3.46511 5 4.7134 6 4.6458 3 4.5797 1 4.4518 2 4.3294 8 4.21236 6 5.6014 3 5.5081 3 5.4171 9 5.2421 4 5.0756 9 4.91732 7 6.4719 9 6.3493 9 6.2302 8 6.0020 5 5.7863 7 5.58238 8 7.3254 8 7.1701 4 7.0196 9 6.7327 4 6.4632 1 6.20979 9 8.1622 7.9708 7.7861 7.4353 7.1078 6.80169 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 4 7 1 3 2 10 8.9825 9 8.7520 6 8.5302 0 8.1109 0 7.7217 3 7.36009 11 9.7868 5 9.5142 1 9.2526 2 8.7604 8 8.3064 1 7.88687 12 10.575 34 10.257 76 9.9540 0 9.3850 7 8.8632 5 8.38384 13 11.348 37 10.983 19 10.634 96 9.9856 5 9.3935 7 8.85268 14 12.106 25 11.690 91 11.296 07 10.563 12 9.8986 4 9.29498 15 12.849 26 12.381 38 11.937 94 11.118 39 10.379 66 9.71225 16 13.577 71 13.055 00 12.561 10 11.652 30 10.837 77 10.10590 17 14.291 87 13.712 20 13.166 12 12.165 67 11.274 07 10.47726 18 14.992 03 14.353 36 13.753 51 12.659 30 11.689 59 10.82760 19 15.678 46 14.978 89 14.323 80 13.133 94 12.085 32 11.15812 20 16.351 43 15.589 16 14.877 47 13.590 33 12.462 21 11.46992 21 17.011 21 16.184 55 15.415 02 14.029 16 12.821 15 11.76408 .94340 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 .94340 22 17.658 05 16.765 41 15.936 92 14.451 12 13.163 00 12.04158 23 18.292 20 17.332 11 16.443 61 14.856 84 13.488 57 12.30338 24 18.913 93 17.884 99 16.935 54 15.246 96 13.798 64 12.55036 25 19.523 46 18.424 38 17.413 15 15.622 08 14.093 94 12.78336 26 20.121 04 18.950 61 17.876 84 15.982 77 14.375 19 13.00317 27 20.706 90 19.464 01 18.327 03 16.329 59 14.643 03 13.21053 28 21.281 27 19.964 89 18.764 11 16.663 06 14.898 13 13.40616 29 21.844 38 20.453 55 19.188 45 16.983 71 15.141 07 13.59072 30 22.396 46 20.930 29 19.600 44 17.292 03 15.372 45 13.76483 31 22.937 70 21.395 41 20.000 43 17.588 49 15.592 81 13.92909 32 23.468 33 21.849 18 20.388 77 17.873 55 15.802 68 14.08404 33 23.988 56 22.291 88 20.765 79 18.147 65 16.002 55 14.23023 34 24.498 22.723 21.131 18.411 16.192 14.36814 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 59 79 84 20 90 35 24.998 62 23.145 16 21.487 22 18.664 61 16.374 19 14.49825 36 25.488 84 23.556 25 21.832 25 18.908 28 16.546 85 14.62099 37 25.969 45 23.957 32 22.167 24 19.142 58 16.711 29 14.73678 38 26.440 64 24.348 60 22.492 46 19.367 86 16.867 89 14.84602 39 26.902 59 24.730 34 22.808 22 19.584 48 17.017 04 14.94907 40 27.355 48 25.102 78 23.114 77 19.792 77 17.159 09 15.04630 8% 9% 10% 11% 12% 15% (n) Periods .92593 .91743 .90909 .90090 .89286 .86957 1 1.78326 1.7591 1 1.7355 4 1.7125 2 1.6900 5 1.6257 1 2 2.57710 2.5313 0 2.4868 5 2.4437 1 2.4018 3 2.2832 3 3 3.31213 3.2397 2 3.1698 6 3.1024 5 3.0373 5 2.8549 8 4 3.99271 3.8896 5 3.7907 9 3.6959 0 3.6047 8 3.3521 6 5 .94340 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 4.62288 4.4859 2 4.3552 6 4.2305 4 4.1114 1 3.7844 8 6 5.20637 5.0329 5 4.8684 2 4.7122 0 4.5637 6 4.1604 2 7 5.74664 5.5348 2 5.3349 3 5.1461 2 4.9676 4 4.4873 2 8 6.24689 5.9952 5 5.7590 2 5.5370 5 5.3282 5 4.7715 8 9 6.71008 6.4176 6 6.1445 7 5.8892 3 5.6502 2 5.0187 7 10 7.13896 6.8051 9 6.4950 6 6.2065 2 5.9377 0 5.2337 1 11 7.53608 7.1607 3 6.8136 9 6.4923 6 6.1943 7 5.4206 2 12 7.90378 7.4869 0 7.1033 6 6.7498 7 6.4235 5 5.5831 5 13 8.24424 7.7861 5 7.3666 9 6.9818 7 6.6281 7 5.7244 8 14 8.55948 8.0606 9 7.6060 8 7.1908 7 6.8108 6 5.8473 7 15 8.85137 8.3125 6 7.8237 1 7.3791 6 6.9739 9 5.9542 4 16 9.12164 8.5436 3 8.0215 5 7.5487 9 7.1196 3 6.0471 6 17 9.37189 8.7556 8.2014 7.7016 7.2496 6.1279 18 .94340 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 3 1 2 7 7 9.60360 8.9501 2 8.3649 2 7.8392 9 7.3657 8 6.1982 3 19 9.81815 9.1285 5 8.5135 6 7.9633 3 7.4694 4 6.2593 3 20 10.01680 9.2922 4 8.6486 9 8.0750 7 7.5620 0 6.3124 6 21 10.20074 9.4424 3 8.7715 4 8.1757 4 7.6446 5 6.3586 6 22 10.37106 9.5802 1 8.8832 2 8.2664 3 7.7184 3 6.3988 4 23 10.52876 9.7066 1 8.9847 4 8.3481 4 7.7843 2 6.4337 7 24 10.67478 9.8225 8 9.0770 4 8.4217 4 7.8431 4 6.4641 5 25 10.80998 9.9289 7 9.1609 5 8.4880 6 7.8956 6 6.4905 6 26 10.93516 10.026 58 9.2372 2 8.5478 0 7.9425 5 6.5135 3 27 11.05108 10.116 13 9.3065 7 8.6016 2 7.9844 2 6.5335 1 28 11.15841 10.198 28 9.3696 1 8.6501 1 8.0218 1 6.5508 8 29 11.25778 10.273 65 9.4269 1 8.6937 9 8.0551 8 6.5659 8 30 .94340 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 .94340 11.34980 10.342 80 9.4790 1 8.7331 5 8.0849 9 6.5791 1 31 11.43500 10.406 24 9.5263 8 8.7686 0 8.1115 9 6.5905 3 32 11.51389 10.464 44 9.5694 3 8.8005 4 8.1353 5 6.6004 6 33 11.58693 10.517 84 9.6085 8 8.8293 2 8.1565 6 6.6091 0 34 11.65457 10.566 82 9.6441 6 8.8552 4 8.1755 0 6.6166 1 35 11.71719 10.611 76 9.6765 1 8.8785 9 8.1924 1 6.6231 4 36 11.77518 10.652 99 9.7059 2 8.8996 3 8.2075 1 6.6288 2 37 11.82887 10.690 82 9.7326 5 8.9185 9 8.2209 9 6.6337 5 38 11.87858 10.725 52 9.7569 7 8.9356 7 8.2330 3 6.6380 5 39 11.92461 10.757 36 9.7790 5 8.9510 5 8.2437 8 6.6417 8 40 5.PRESENT VALUE OF AN ANNUITY DUE OF 1 TABLE. Contains the amounts that must be deposited now at a specified rate of interest to permit withdrawals of 1 at the beginning of regular periodic intervals for the specified number of periods (Table 6.5). Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.00000 2 1.9803 9 1.9756 1 1.9708 7 1.9615 4 1.9523 8 1.94340 3 2.9415 6 2.9274 2 2.9134 7 2.8860 9 2.8594 1 2.83339 4 3.8838 8 3.8560 2 3.8286 1 3.7750 9 3.7232 5 3.67301 5 4.8077 3 4.7619 7 4.7171 0 4.6299 0 4.5459 5 4.46511 6 5.7134 6 5.6458 3 5.5797 1 5.4518 2 5.3294 8 5.21236 7 6.6014 3 6.5081 3 6.4171 9 6.2421 4 6.0756 9 5.91732 8 7.4719 9 7.3493 9 7.2302 8 7.0020 5 6.7863 7 6.58238 9 8.3254 8 8.1701 4 8.0196 9 7.7327 4 7.4632 1 7.20979 10 9.1622 4 8.9708 7 8.7861 1 8.4353 3 8.1078 2 7.80169 11 9.9825 9 9.7520 6 9.5302 0 9.1109 0 8.7217 3 8.36009 12 10.786 85 10.514 21 10.252 62 9.7604 8 9.3064 1 8.88687 13 11.575 34 11.257 76 10.954 00 10.385 07 9.8632 5 9.38384 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.00000 14 12.348 37 11.983 19 11.634 96 10.985 65 10.393 57 9.85268 15 13.106 25 12.690 91 12.296 07 11.563 12 10.898 64 10.29498 16 13.849 26 13.381 38 12.937 94 12.118 39 11.379 66 10.71225 17 14.577 71 14.055 00 13.561 10 12.652 30 11.837 77 11.10590 18 15.291 87 14.712 20 14.166 12 13.165 67 12.274 07 11.47726 19 15.992 03 15.353 36 14.753 51 13.659 30 12.689 59 11.82760 20 16.678 46 15.978 89 15.323 80 14.133 94 13.085 32 12.15812 21 17.351 43 16.589 16 15.877 47 14.590 33 13.462 21 12.46992 22 18.011 21 17.184 55 16.415 02 15.029 16 13.821 15 12.76408 23 18.658 05 17.765 41 16.936 92 15.451 12 14.163 00 13.04158 24 19.292 20 18.332 11 17.443 61 15.856 84 14.488 57 13.30338 25 19.913 93 18.884 99 17.935 54 16.246 96 14.798 64 13.55036 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.00000 26 20.523 46 19.424 38 18.413 15 16.622 08 15.093 94 13.78336 27 21.121 04 19.950 61 18.876 84 16.982 77 15.375 19 14.00317 28 21.706 90 20.464 01 19.327 03 17.329 59 15.643 03 14.21053 29 22.281 27 20.964 89 19.764 11 17.663 06 15.898 13 14.40616 30 22.844 38 21.453 55 20.188 45 17.983 71 16.141 07 14.59072 31 23.396 46 21.930 29 20.600 44 18.292 03 16.372 45 14.76483 32 23.937 70 22.395 41 21.000 43 18.588 49 16.592 81 14.92909 33 24.468 33 22.849 18 21.388 77 18.873 55 16.802 68 15.08404 34 24.988 56 23.291 88 21.765 79 19.147 65 17.002 55 15.23023 35 25.498 59 23.723 79 22.131 84 19.411 20 17.192 90 15.36814 36 25.998 62 24.145 16 22.487 22 19.664 61 17.374 19 15.49825 37 26.488 84 24.556 25 22.832 25 19.908 28 17.546 85 15.62099 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.00000 38 26.969 45 24.957 32 23.167 24 20.142 58 17.711 29 15.73678 39 27.440 64 25.348 60 23.492 46 20.367 86 17.867 89 15.84602 40 27.902 59 25.730 34 23.808 22 20.584 48 18.017 04 15.94907 8% 9% 10% 11% 12% 15% (n) Periods 1.00000 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1 1.92593 1.9174 3 1.9090 9 1.9009 0 1.8928 6 1.8695 7 2 2.78326 2.7591 1 2.7355 4 2.7125 2 2.6900 5 2.6257 1 3 3.57710 3.5313 0 3.4868 5 3.4437 1 3.4018 3 3.2832 3 4 4.31213 4.2397 2 4.1698 6 4.1024 5 4.0373 5 3.8549 8 5 4.99271 4.8896 5 4.7907 9 4.6959 0 4.6047 8 4.3521 6 6 5.62288 5.4859 2 5.3552 6 5.2305 4 5.1114 1 4.7844 8 7 6.20637 6.0329 5 5.8684 2 5.7122 0 5.5637 6 5.1604 2 8 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 6.74664 6.5348 2 6.3349 3 6.1461 2 5.9676 4 5.4873 2 9 7.24689 6.9952 5 6.7590 2 6.5370 5 6.3282 5 5.7715 8 10 7.71008 7.4176 6 7.1445 7 6.8892 3 6.6502 2 6.0187 7 11 8.13896 7.8051 9 7.4950 6 7.2065 2 6.9377 0 6.2337 1 12 8.53608 8.1607 3 7.8136 9 7.4923 6 7.1943 7 6.4206 2 13 8.90378 8.4869 0 8.1033 6 7.7498 7 7.4235 5 6.5831 5 14 9.24424 8.7861 5 8.3666 9 7.9818 7 7.6281 7 6.7244 8 15 9.55948 9.0606 9 8.6060 8 8.1908 7 7.8108 6 6.8473 7 16 9.85137 9.3125 6 8.8237 1 8.3791 6 7.9739 9 6.9542 4 17 10.12164 9.5436 3 9.0215 5 8.5487 9 8.1196 3 7.0471 6 18 10.37189 9.7556 3 9.2014 1 8.7016 2 8.2496 7 7.1279 7 19 10.60360 9.9501 2 9.3649 2 8.8392 9 8.3657 8 7.1982 3 20 1.00000 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 10.81815 10.128 55 9.5135 6 8.9633 3 8.4694 4 7.2593 3 21 11.01680 10.292 24 9.6486 9 9.0750 7 8.5620 0 7.3124 6 22 11.20074 10.442 43 9.7715 4 9.1757 4 8.6446 5 7.3586 6 23 11.37106. 10.580 21 9.8832 2 9.2664 3 8.7184 3 7.3988 4 24 11.52876 10.706 61 9.9847 4 9.3481 4 8.7843 2 7.4337 7 25 11.67478 10.822 58 10.077 04 9.4217 4 8.8431 4 7.4641 5 26 11.80998 10.928 97 10.160 95 9.4880 6 8.8956 6 7.4905 6 27 11.93518 11.026 58 10.237 22 9.5478 0 8.9425 5 7.5135 3 28 12.05108 11.116 13 10.306 57 9.6016 2 8.9844 2 7.5335 1 29 12.15841 11.198 28 10.369 61 9.6501 1 9.0218 1 7.5508 8 30 12.25778 11.273 65 10.426 91 9.6937 9 9.0551 8 7.5659 8 31 12.34980 11.342 80 10.479 01 9.7331 5 9.0849 9 7.5791 1 32 1.00000 Table6.5PRESENT VALUE OF AN ANNUITY DUE OF 1 PVF-ADn,i=1+11(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0000 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0 12.43500 11.406 24 10.526 38 9.7686 0 9.1115 9 7.5905 3 33 12.51389 11.464 44 10.569 43 9.8005 4 9.1353 5 7.6004 6 34 12.58693 11.517 84 10.608 58 9.8293 2 9.1565 6 7.6091 0 35 12.65457 11.566 82 10.644 16 9.8552 4 9.1755 0 7.6166 1 36 12.71719 11.611 76 10.676 51 9.8785 9 9.1924 1 7.6231 4 37 12.77518 11.652 99 10.705 92 9.8996 3 9.2075 1 7.6288 2 38 12.82887 11.690 82 10.732 65 9.9185 9 9.2209 9 7.6337 5 39 12.87858 11.725 52 10.756 97 9.9356 7 9.2330 3 7.6380 5 40 1.00000 Practice - 1 Tony Hitchcock is 43 years old today and he wishes to accumulate $512,000 by his 65th birthday so he can retire to his summer place on Lake Hopatcong. He wishes to accumulate this amount by making equal deposits on his 43th through his 64th birthdays. What annual deposit must Tony make if the fund will earn 12% interest compounded annually? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Annual deposit Please show your calculations. Wildhorse Inc. loans money to John Kruk Corporation in the amount of $810,000. Wildhorse accepts an 8% note due in 6 years with interest payable semiannually. After 2 years (and receipt of interest for 2 years), Wildhorse needs money and therefore sells the note to Chicago National Bank, which demands interest on the note of 10% compounded semiannually. What is the amount Wildhorse will receive on the sale of the note? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Amount received on sale of note Please show your calculations. Wildhorse Inc. wishes to accumulate $1,268,900 by December 31, 2027, to retire bonds outstanding. The company deposits $198,200 on December 31, 2017, which will earn interest at 10% compounded quarterly, to help in the retirement of this debt. In addition, the company wants to know how much should be deposited at the end of each quarter for 10 years to ensure that $1,268,900 is available at the end of 2027. (The quarterly deposits will also earn at a rate of 10%, compounded quarterly.) (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Annuity of value of quarterly deposits Please show your calculations. Practice - 2 Using the appropriate interest table, compute the present values of the following periodic amounts due at the end of the designated periods. Open References to view factor tables $50,930 receivable at the end of each period for 9 periods compounded at 12%. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Present value Please show your calculations. Open References to view factor tables $50,930 payments to be made at the end of each period for 18 periods at 9%. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Present value Please show your calculations. Open References to view factor tables $50,930 payable at the end of the seventh, eighth, ninth, and tenth periods at 12%. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Present value Please show your calculations. Practice - 3 Cullumber Excavating Inc. is purchasing a bulldozer. The equipment has a price of $103,000. The manufacturer has offered a payment plan that would allow Cullumber to make 9 equal annual payments of $19,330.92, with the first payment due one year after the purchase. How much total interest will Cullumber pay on this payment plan? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Total interest Please show your calculations. Cullumber could borrow $103,000 from its bank to finance the purchase at an annual rate of 11%. Open References to view factor tables Should Cullumber borrow from the bank or use the manufacturer's payment plan to pay for the equipment? (Round answer to 0 decimal places, e.g. 7%.) Manufacturer's rate % Please show your calculations. Practice - 4 Grouper Inc., a manufacturer of steel school lockers, plans to purchase a new punch press for use in its manufacturing process. After contacting the appropriate vendors, the purchasing department received differing terms and options from each vendor. The Engineering Department has determined that each vendor's punch press is substantially identical and each has a useful life of 20 years. In addition, Engineering has estimated that required year-end maintenance costs will be $1,070 per year for the first 5 years, $2,070 per year for the next 10 years, and $3,070 per year for the last 5 years. Following is each vendor's sales package. Vendor A: $59,950 cash at time of delivery and 10 year-end payments of $17,830 each. Vendor A offers all its customers the right to purchase at the time of sale a separate 20-year maintenance service contract, under which Vendor A will perform all year-end maintenance at a one-time initial cost of $10,390. Vendor B: Forty semiannual payments of $10,120 each, with the first installment due upon delivery. Vendor B will perform all year-end maintenance for the next 20 years at no extra charge. Vendor C: Full cash price of $139,500 will be due upon delivery. Assuming that both Vendors A and B will be able to perform the required year-end maintenance, that Grouper's cost of funds is 10%, and the machine will be purchased on January 1, compute the following: Open References to view factor tables The present value of the cash flows for vendor A. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) The present value of the cash outflows for this option is $ The present value of the cash flows for vendor B. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) The present value of the cash outflows for this option is $ The present value of the cash flows for vendor C. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) The present value of the cash outflows for this option is $ From which vendor should the press be purchased? The press should be purchased from Practice - 5 Open References to view factor tables How much must the balance of the fund equal on June 30, 2020, in order for Newman to satisfy his objective? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Balance of the fund equal on June 30, 2020 Open References to view factor tables What are each of Newman's contributions to the fund? (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) $ Newman's contributions to the fund References CLOSE INTEREST TABLES AND THEIR CONTENTS 1.FUTURE VALUE OF 1 TABLE. Contains the amounts to which 1 will accumulate if deposited now at a specified rate and left for a specified number of periods (Table 6.1). Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.06000 2 1.0404 0 1.0506 3 1.0609 0 1.0816 0 1.10250 1.12360 3 1.0612 1 1.0768 9 1.0927 3 1.1248 6 1.15763 1.19102 4 1.0824 3 1.1038 1 1.1255 1 1.1698 6 1.21551 1.26248 5 1.1040 8 1.1314 1 1.1592 7 1.2166 5 1.27628 1.33823 6 1.1261 6 1.1596 9 1.1940 5 1.2653 2 1.34010 1.41852 7 1.1486 9 1.1886 9 1.2298 7 1.3159 3 1.40710 1.50363 8 1.1716 6 1.2184 0 1.2667 7 1.3685 7 1.47746 1.59385 9 1.1950 9 1.2488 6 1.3047 7 1.4233 1 1.55133 1.68948 10 1.2189 9 1.2800 8 1.3439 2 1.4802 4 1.62889 1.79085 11 1.2433 1.3120 1.3842 1.5394 1.71034 1.89830 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.06000 7 9 3 5 12 1.2682 4 1.3448 9 1.4257 6 1.6010 3 1.79586 2.01220 13 1.2936 1 1.3785 1 1.4685 3 1.6650 7 1.88565 2.13293 14 1.3194 8 1.4129 7 1.5125 9 1.7316 8 1.97993 2.26090 15 1.3458 7 1.4483 0 1.5579 7 1.8009 4 2.07893 2.39656 16 1.3727 9 1.4845 1 1.6047 1 1.8729 8 2.18287 2.54035 17 1.4002 4 1.5216 2 1.6528 5 1.9479 0 2.29202 2.69277 18 1.4282 5 1.5596 6 1.7024 3 2.0258 2 2.40662 2.85434 19 1.4568 1 1.5986 5 1.7535 1 2.1068 5 2.52695 3.02560 20 1.4859 5 1.6386 2 1.8061 1 2.1911 2 2.65330 3.20714 21 1.5156 7 1.6795 8 1.8602 9 2.2787 7 2.78596 3.39956 22 1.5459 8 1.7215 7 1.9161 0 2.3699 2 2.92526 3.60354 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.06000 23 1.5769 0 1.7646 1 1.9735 9 2.4647 2 3.07152 3.81975 24 1.6084 4 1.8087 3 2.0327 9 2.5633 0 3.22510 4.04893 25 1.6406 1 1.8539 4 2.0937 8 2.6658 4 3.38635 4.29187 26 1.6734 2 1.9002 9 2.1565 9 2.7724 7 3.55567 4.54938 27 1.7068 9 1.9478 0 2.2212 9 2.8833 7 3.73346 4.82235 28 1.7410 2 1.9965 0 2.2879 3 2.9987 0 3.92013 5.11169 29 1.7758 4 2.0464 1 2.3565 7 3.1186 5 4.11614 5.41839 30 1.8113 6 2.0975 7 2.4272 6 3.2434 0 4.32194 5.74349 31 1.8475 9 2.1500 1 2.5000 8 3.3731 3 4.53804 6.08810 32 1.8845 4 2.2037 6 2.5750 8 3.5080 6 4.76494 6.45339 33 1.9222 3 2.2588 5 2.6523 4 3.6483 8 5.00319 6.84059 34 1.9606 8 2.3153 2 2.7319 1 3.7943 2 5.25335 7.25103 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.06000 35 1.9998 9 2.3732 1 2.8138 6 3.9460 9 5.51602 7.68609 36 2.0398 9 2.4325 4 2.8982 8 4.1039 3 5.79182 8.14725 37 2.0806 9 2.4933 5 2.9852 3 4.2680 9 6.08141 8.63609 38 2.1223 0 2.5556 8 3.0747 8 4.4388 1 6.38548 9.15425 39 2.1647 4 2.6195 7 3.1670 3 4.6163 7 6.70475 9.70351 40 2.2080 4 2.6850 6 3.2620 4 4.8010 2 7.03999 10.28572 8% 9% 10% 11% 12% 15% (n) Periods 1.08000 1.0900 0 1.1000 0 1.1100 0 1.1200 0 1.15000 1 1.16640 1.1881 0 1.2100 0 1.2321 0 1.2544 0 1.32250 2 1.25971 1.2950 3 1.3310 0 1.3676 3 1.4049 3 1.52088 3 1.36049 1.4115 8 1.4641 0 1.5180 7 1.5735 2 1.74901 4 1.46933 1.5386 2 1.6105 1 1.6850 6 1.7623 4 2.01136 5 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 1.58687 1.6771 0 1.7715 6 1.8704 1 1.9738 2 2.31306 6 1.71382 1.8280 4 1.9487 2 2.0761 6 2.2106 8 2.66002 7 1.85093 1.9925 6 2.1435 9 2.3045 4 2.4759 6 3.05902 8 1.99900 2.1718 9 2.3579 5 2.5580 3 2.7730 8 3.51788 9 2.15892 2.3673 6 2.5937 4 2.8394 2 3.1058 5 4.04556 10 2.33164 2.5804 3 2.8531 2 3.1517 6 3.4785 5 4.65239 11 2.51817 2.8126 7 3.1384 3 3.4984 5 3.8959 8 5.35025 12 2.71962 3.0658 1 3.4522 7 3.8832 8 4.3634 9 6.15279 13 2.93719 3.3417 3 3.7975 0 4.3104 4 4.8871 1 7.07571 14 3.17217 3.6424 8 4.1772 5 4.7845 9 5.4735 7 8.13706 15 3.42594 3.9703 1 4.5949 7 5.3108 9 6.1303 9 9.35762 16 3.70002 4.3276 3 5.0544 7 5.8950 9 6.8660 4 10.7612 6 17 1.06000 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 3.99602 4.7171 2 5.5599 2 6.5435 5 7.6899 7 12.3754 5 18 4.31570 5.1416 6 6.1159 1 7.2633 4 8.6127 6 14.2317 7 19 4.66096 5.6044 1 6.7275 0 8.0623 1 9.6462 9 16.3665 4 20 5.03383 6.1088 1 7.4002 5 8.9491 7 10.803 85 18.8215 2 21 5.43654 6.6586 0 8.1402 8 9.9335 7 12.100 31 21.6447 5 22 5.87146 7.2578 7 8.9543 0 11.026 27 13.552 35 24.8914 6 23 6.34118 7.9110 8 9.8497 3 12.239 16 15.178 63 28.6251 8 24 6.84847 8.6230 8 10.834 71 13.585 46 17.000 00 32.9189 5 25 7.39635 9.3991 6 11.918 18 15.079 86 19.040 07 37.8568 0 26 7.98806 10.245 08 13.109 99 16.738 65 21.324 88 43.5353 2 27 8.62711 11.167 14 14.420 99 18.579 90 23.883 87 50.0656 1 28 9.31727 12.172 18 15.863 09 20.623 69 26.749 93 57.5754 5 29 1.06000 Table6.1FUTURE VALUE OF 1 (FUTURE VALUE OF A SINGLE SUM) FVFn,i=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 1.0200 0 1.0250 0 1.0300 0 1.0400 0 1.05000 10.06266 13.267 68 17.449 40 22.892 30 29.959 92 66.2117 7 30 10.86767 14.461 77 19.194 34 25.410 45 33.555 11 76.1435 4 31 11.73708 15.763 33 21.113 78 28.205 60 37.581 73 87.5650 7 32 12.67605 17.182 03 23.225 15 31.308 21 42.091 53 100.699 83 33 13.69013 18.728 41 25.547 67 34.752 12 47.142 52 115.804 80 34 14.78534 20.413 97 28.102 44 38.574 85 52.799 62 133.175 52 35 15.96817 22.251 23 30.912 68 42.818 08 59.135 57 153.151 85 36 17.24563 24.253 84 34.003 95 47.528 07 66.231 84 176.124 63 37 18.62528 26.436 68 37.404 34 52.756 16 74.179 66 202.543 32 38 20.11530 28.815 98 41.144 79 58.559 34 83.081 22 232.924 82 39 21.72452 31.409 42 45.259 26 65.000 87 93.050 97 267.863 55 40 1.06000 2.PRESENT VALUE OF 1 TABLE. Contains the amounts that must be deposited now at a specified rate of interest to equal 1 at the end of a specified number of periods (Table 6.2). Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 2 . 9611 7 . 9518 1 . 9426 0 . 9245 6 . 9070 3 .89000 3 . 9423 2 . 9286 0 . 9151 4 . 8890 0 . 8638 4 .83962 4 . 9238 5 . 9059 5 . 8884 9 . 8548 0 . 8227 0 .79209 5 . 9057 3 . 8838 5 . 8626 1 . 8219 3 . 7835 3 .74726 6 . 8879 7 . 8623 0 . 8374 8 . 7903 1 . 7462 2 .70496 7 . 8705 6 . 8412 7 . 8130 9 . 7599 2 . 7106 8 .66506 8 . 8534 9 . 8207 5 . 7894 1 . 7306 9 . 6768 4 .62741 9 . 8367 6 . 8007 3 . 7664 2 . 7025 9 . 6446 1 .59190 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 10 . 8203 5 . 7812 0 . 7440 9 . 6755 6 . 6139 1 .55839 11 . 8042 6 . 7621 4 . 7224 2 . 6495 8 . 5846 8 .52679 12 . 7884 9 . 7435 6 . 7013 8 . 6246 0 . 5568 4 .49697 13 . 7730 3 . 7254 2 . 6809 5 . 6005 7 . 5303 2 .46884 14 . 7578 8 . 7077 3 . 6611 2 . 5774 8 . 5050 7 .44230 15 . 7430 1 . 6904 7 . 6418 6 . 5552 6 . 4810 2 .41727 16 . 7284 5 . 6736 2 . 6231 7 . 5339 1 . 4581 1 .39365 17 . 7141 6 . 6572 0 . 6050 2 . 5133 7 . 4363 0 .37136 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 18 . 7001 6 . 6411 7 . 5873 9 . 4936 3 . 4155 2 .35034 19 . 6864 3 . 6255 3 . 5702 9 . 4746 4 . 3957 3 .33051 20 . 6729 7 . 6102 7 . 5536 8 . 4563 9 . 3768 9 .31180 21 . 6597 8 . 5953 9 . 5375 5 . 4388 3 . 3589 4 .29416 22 . 6468 4 . 5808 6 . 5218 9 . 4219 6 . 3418 5 .27751 23 . 6341 6 . 5667 0 . 5066 9 . 4057 3 . 3255 7 .26180 24 . 6217 2 . 5528 8 . 4919 3 . 3901 2 . 3100 7 .24698 25 . 6095 3 . 5393 9 . 4776 1 . 3751 2 . 2953 0 .23300 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 26 . 5975 8 . 5262 3 . 4636 9 . 3606 9 . 2812 4 .21981 27 . 5858 6 . 5134 0 . 4501 9 . 3468 2 . 2678 5 .20737 28 . 5743 7 . 5008 8 . 4370 8 . 3334 8 . 2550 9 .19563 29 . 5631 1 . 4886 6 . 4243 5 . 3206 5 . 2429 5 .18456 30 . 5520 7 . 4767 4 . 4119 9 . 3083 2 . 2313 8 .17411 31 . 5412 5 . 4651 1 . 3999 9 . 2964 6 . 2203 6 .16425 32 . 5306 3 . 4537 7 . 3883 4 . 2850 6 . 2098 7 .15496 33 . 5202 3 . 4427 0 . 3770 3 . 2740 9 . 1998 7 .14619 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 34 . 5100 3 . 4319 1 . 3660 4 . 2635 5 . 1903 5 .13791 35 . 5000 3 . 4213 7 . 3553 8 . 2534 2 . 1812 9 .13011 36 . 4902 2 . 4110 9 . 3450 3 . 2436 7 . 1726 6 .12274 37 . 4806 1 . 4010 7 . 3349 8 . 2343 0 . 1644 4 .11579 38 . 4711 9 . 3912 8 . 3252 3 . 2252 9 . 1566 1 .10924 39 . 4619 5 . 3817 4 . 3157 5 . 2166 2 . 1491 5 .10306 40 . 4528 9 . 3724 3 . 3065 6 . 2082 9 . 1420 5 .09722 8% 9% 10% 11% 12% 15% (n) Periods .92593 . 9174 3 . 9090 9 . 9009 0 . 8928 6 . 8695 7 1 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .85734 . 8416 8 . 8264 5 . 8116 2 . 7971 9 . 7561 4 2 .79383 . 7721 8 . 7513 2 . 7311 9 . 7117 8 . 6575 2 3 .73503 . 7084 3 . 6830 1 . 6587 3 . 6355 2 . 5717 5 4 .68058 . 6499 3 . 6209 2 . 5934 5 . 5674 3 . 4971 8 5 .63017 . 5962 7 . 5644 7 . 5346 4 . 5066 3 . 4323 3 6 .58349 . 5470 3 . 5131 6 . 4816 6 . 4523 5 . 3759 4 7 .54027 . 5018 7 . 4665 1 . 4339 3 . 4038 8 . 3269 0 8 .50025 . 4604 3 . 4241 0 . 3909 2 . 3606 1 . 2842 6 9 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .46319 . 4224 1 . 3855 4 . 3521 8 . 3219 7 . 2471 9 10 .42888 . 3875 3 . 3504 9 . 3172 8 . 2874 8 . 2149 4 11 .39711 . 3555 4 . 3186 3 . 2858 4 . 2566 8 . 1869 1 12 .36770 . 3261 8 . 2896 6 . 2575 1 . 2291 7 . 1625 3 13 .34046 . 2992 5 . 2633 3 . 2319 9 . 2046 2 . 1413 3 14 .31524 . 2745 4 . 2393 9 . 2090 0 . 1827 0 . 1228 9 15 .29189 . 2518 7 . 2176 3 . 1882 9 . 1631 2 . 1068 7 16 .27027 . 2310 7 . 1978 5 . 1696 3 . 1456 4 . 0929 3 17 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .25025 . 2119 9 . 1798 6 . 1528 2 . 1300 4 . 0808 1 18 .23171 . 1944 9 . 1635 1 . 1376 8 . 1161 1 . 0702 7 19 .21455 . 1784 3 . 1486 4 . 1240 3 . 1036 7 . 0611 0 20 .19866 . 1637 0 . 1351 3 . 1117 4 . 0925 6 . 0531 3 21 .18394 . 1501 8 . 1228 5 . 1006 7 . 0826 4 . 0462 0 22 .17032 . 1377 8 . 1116 8 . 0906 9 . 0737 9 . 0401 7 23 .15770 . 1264 1 . 1015 3 . 0817 0 . 0658 8 . 0349 3 24 .14602 . 1159 7 . 0923 0 . 0736 1 . 0588 2 . 0303 8 25 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .13520 . 1063 9 . 0839 1 . 0663 1 . 0525 2 . 0264 2 26 .12519 . 0976 1 . 0762 8 . 0597 4 . 0468 9 . 0229 7 27 .11591 . 0895 5 . 0693 4 . 0538 2 . 0418 7 . 0199 7 28 .10733 . 0821 6 . 0630 4 . 0484 9 . 0373 8 . 0173 7 29 .09938 . 0753 7 . 0573 1 . 0436 8 . 0333 8 . 0151 0 30 .09202 . 0691 5 . 0521 0 . 0393 5 . 0298 0 . 0131 3 31 .08520 . 0634 4 . 0473 6 . 0354 5 . 0266 1 . 0114 2 32 .07889 . 0582 0 . 0430 6 . 0319 4 . 0237 6 . 0099 3 33 Table6.2PRESENT VALUE OF 1 (PRESENT VALUE OF A SINGLE SUM) PVFn,i=1(1+i)n=(1+i)n (n) Periods 2% 2% 3% 4% 5% 6% 1 . 9803 9 . 9756 1 . 9708 7 . 9615 4 . 9523 8 .94340 .07305 . 0534 0 . 0391 4 . 0287 8 . 0212 1 . 0086 4 34 .06763 . 0489 9 . 0355 8 . 0259 2 . 0189 4 . 0075 1 35 .06262 . 0449 4 . 0323 5 . 0233 5 . 0169 1 . 0065 3 36 .05799 . 0412 3 . 0294 1 . 0210 4 . 0151 0 . 0056 8 37 .05369 . 0378 3 . 0267 4 . 0189 6 . 0134 8 . 0049 4 38 .04971 . 0347 0 . 0243 0 . 0170 8 . 0120 4 . 0042 9 39 .04603 . 0318 4 . 0221 0 . 0153 8 . 0107 5 . 0037 3 40 3.FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 TABLE. Contains the amounts to which periodic rents of 1 will accumulate if the payments (rents) are invested at the end of each period at a specified rate of interest for a specified number of periods (Table 6.3). Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 2 2.02000 2.02500 2.03000 2.04000 2.05000 2.06000 3 3.06040 3.07563 3.09090 3.12160 3.15250 3.18360 4 4.12161 4.15252 4.18363 4.24646 4.31013 4.37462 5 5.20404 5.25633 5.30914 5.41632 5.52563 5.63709 6 6.30812 6.38774 6.46841 6.63298 6.80191 6.97532 7 7.43428 7.54743 7.66246 7.89829 8.14201 8.39384 8 8.58297 8.73612 8.89234 9.21423 9.54911 9.89747 9 9.75463 9.95452 10.1591 1 10.5828 0 11.02656 11.49132 10 10.9497 2 11.2033 8 11.4633 8 12.0061 1 12.57789 13.18079 11 12.1687 2 12.4834 7 12.8078 0 13.4863 5 14.20679 14.97164 12 13.4120 9 13.7955 5 14.1920 3 15.0258 1 15.91713 16.86994 13 14.6803 3 15.1404 4 15.6177 9 16.6268 4 17.71298 18.88214 14 15.9739 4 16.5189 5 17.0863 2 18.2919 1 19.59863 21.01507 15 17.2934 2 17.9319 3 18.5989 1 20.0235 9 21.57856 23.27597 16 18.6392 9 19.3802 2 20.1568 8 21.8245 3 23.65749 25.67253 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 17 20.0120 7 20.8647 3 21.7615 9 23.6975 1 25.84037 28.21288 18 21.4123 1 22.3863 5 23.4144 4 25.6454 1 28.13238 30.90565 19 22.8405 6 23.9460 1 25.1168 7 27.6712 3 30.53900 33.75999 20 24.2973 7 25.5446 6 26.8703 7 29.7780 8 33.06595 36.78559 21 25.7833 2 27.1832 7 28.6764 9 31.9692 0 35.71925 39.99273 22 27.2989 8 28.8628 6 30.5367 8 34.2479 7 38.50521 43.39229 23 28.8449 6 30.5844 3 32.4528 8 36.6178 9 41.43048 46.99583 24 30.4218 6 32.3490 4 34.4264 7 39.0826 0 44.50200 50.81558 25 32.0303 0 34.1577 6 36.4592 6 41.6459 1 47.72710 54.86451 26 33.6709 1 36.0117 1 38.5530 4 44.3117 4 51.11345 59.15638 27 35.3443 2 37.9120 0 40.7096 3 47.0842 1 54.66913 63.70577 28 37.0512 1 39.8598 0 42.9309 2 49.9675 8 58.40258 68.52811 29 38.7922 41.8563 45.2188 52.9662 62.32271 73.63980 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 1 1.00000 1.00000 1.00000 1.00000 3 0 5 9 30 40.5680 8 43.9027 0 47.5754 2 31 42.3794 4 46.0002 7 32 44.2270 3 33 6% 1.00000 1.00000 56.0849 4 66.43885 79.05819 50.0026 8 59.3283 4 70.76079 84.80168 48.1502 8 52.5027 6 62.7014 7 75.29883 90.88978 46.1115 7 50.3540 3 55.0778 4 66.2095 3 80.06377 97.34316 34 48.0338 0 52.6128 9 57.7301 8 69.8579 1 85.06696 104.1837 6 35 49.9944 8 54.9282 1 60.4620 8 73.6522 2 90.32031 111.4347 8 36 51.9943 7 57.3014 1 63.2759 4 77.5983 1 95.83632 119.1208 7 37 54.0342 5 59.7339 5 66.1742 2 81.7022 5 101.6281 4 127.2681 2 38 56.1149 4 62.2273 0 69.1594 5 85.9703 4 107.7095 5 135.9042 1 39 58.2372 4 64.7829 8 72.2342 3 90.4091 5 114.0950 2 145.0584 6 40 60.4019 8 67.4025 5 75.4012 6 95.0255 2 120.7997 7 154.7619 7 8% 9% 10% 11% 12% 15% (n) Periods Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1 2.08000 2.09000 2.10000 2.11000 2.12000 2.15000 2 3.24640 3.27810 3.31000 3.34210 3.37440 3.47250 3 4.50611 4.57313 4.64100 4.70973 4.77933 4.99338 4 5.86660 5.98471 6.10510 6.22780 6.35285 6.74238 5 7.33592 7.52334 7.71561 7.91286 8.11519 8.75374 6 8.92280 9.20044 9.48717 9.78327 10.0890 1 11.06680 7 10.63663 11.0284 7 11.4358 9 11.8594 3 12.2996 9 13.72682 8 12.48756 13.0210 4 13.5794 8 14.1639 7 14.7756 6 16.78584 9 14.48656 15.1929 3 15.9374 3 16.7220 1 17.5487 4 20.30372 10 16.64549 17.5602 9 18.5311 7 19.5614 3 20.6545 8 24.34928 11 18.97713 20.1407 2 21.3842 8 22.7131 9 24.1331 3 29.00167 12 21.49530 22.9533 9 24.5227 1 26.2116 4 28.0291 1 34.35192 13 24.21492 26.0191 9 27.9749 8 30.0949 2 32.3926 0 40.50471 14 27.15211 29.3609 31.7724 34.4053 37.2797 47.58041 15 1.00000 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 1 1.00000 1.00000 1.00000 1.00000 2 8 6 2 30.32428 33.0034 0 35.9497 3 39.1899 5 42.7532 8 55.71747 16 33.75023 36.9737 1 40.5447 0 44.5008 4 48.8836 7 65.07509 17 37.45024 41.3013 4 45.5991 7 50.3959 3 55.7497 2 75.83636 18 41.44626 46.0184 6 51.1590 9 56.9394 9 63.4396 8 88.21181 19 45.76196 51.1601 2 57.2750 0 64.2028 3 72.0524 4 102.4435 8 20 50.42292 56.7645 3 64.0025 0 72.2651 4 81.6987 4 118.8101 2 21 55.45676 62.8733 4 71.4027 5 81.2143 1 92.5025 8 137.6316 4 22 60.89330 69.5319 4 79.5430 2 91.1478 8 104.602 89 159.2763 8 23 66.76476 76.7898 1 88.4973 3 102.174 15 118.155 24 184.1678 4 24 73.10594 84.7009 0 98.3470 6 114.413 31 133.333 87 212.7930 2 25 79.95442 93.3239 8 109.181 77 127.998 77 150.333 93 245.7119 7 26 87.35077 102.723 14 121.099 94 143.078 64 169.374 01 283.5687 7 27 1.00000 6% 1.00000 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 5% 6% 1 1.00000 1.00000 1.00000 1.00000 1.00000 95.33883 112.968 22 134.209 94 159.817 29 190.698 89 327.1040 8 28 103.9659 4 124.135 36 148.630 93 178.397 19 214.582 75 377.1696 9 29 113.2832 1 136.307 54 164.494 02 199.020 88 241.332 68 434.7451 5 30 123.3458 7 149.575 22 181.943 43 221.913 17 271.292 61 500.9569 2 31 134.2135 4 164.036 99 201.137 77 247.323 62 304.847 72 577.1004 6 32 145.9506 2 179.800 32 222.251 54 275.529 22 342.429 45 644.6655 3 33 158.6266 7 196.982 34 245.476 70 306.837 44 384.520 98 765.3653 5 34 172.3168 0 215.710 76 271.024 37 341.589 55 431.663 50 881.1701 6 35 187.1021 5 236.124 72 299.126 81 380.164 41 484.463 12 1014.345 68 36 203.0703 2 258.375 95 330.039 49 422.982 49 543.598 69 1167.497 53 37 220.3159 5 282.629 78 364.043 43 470.510 56 609.830 53 1343.622 16 38 238.9412 2 309.066 46 401.447 78 523.266 73 684.010 20 1546.165 49 39 259.0565 337.882 442.592 581.826 767.091 1779.090 40 1.00000 Table6.3FUTURE VALUE OF AN ORDINARY ANNUITY OF 1 FVF-OAn,i=(1+i)n1i (n) Periods 2% 2% 3% 4% 1 1.00000 1.00000 1.00000 1.00000 1.00000 45 56 07 42 31 2 5% 6% 1.00000 4.PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 TABLE. Contains the amounts that must be deposited now at a specified rate of interest to permit withdrawals of 1 at the endof regular periodic intervals for the specified number of periods (Table 6.4). Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 .94340 2 1.9415 6 1.9274 2 1.9134 7 1.8860 9 1.8594 1 1.83339 3 2.8838 8 2.8560 2 2.8286 1 2.7750 9 2.7232 5 2.67301 4 3.8077 3 3.7619 7 3.7171 0 3.6299 0 3.5459 5 3.46511 5 4.7134 6 4.6458 3 4.5797 1 4.4518 2 4.3294 8 4.21236 6 5.6014 3 5.5081 3 5.4171 9 5.2421 4 5.0756 9 4.91732 7 6.4719 9 6.3493 9 6.2302 8 6.0020 5 5.7863 7 5.58238 8 7.3254 8 7.1701 4 7.0196 9 6.7327 4 6.4632 1 6.20979 9 8.1622 7.9708 7.7861 7.4353 7.1078 6.80169 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 4 7 1 3 2 10 8.9825 9 8.7520 6 8.5302 0 8.1109 0 7.7217 3 7.36009 11 9.7868 5 9.5142 1 9.2526 2 8.7604 8 8.3064 1 7.88687 12 10.575 34 10.257 76 9.9540 0 9.3850 7 8.8632 5 8.38384 13 11.348 37 10.983 19 10.634 96 9.9856 5 9.3935 7 8.85268 14 12.106 25 11.690 91 11.296 07 10.563 12 9.8986 4 9.29498 15 12.849 26 12.381 38 11.937 94 11.118 39 10.379 66 9.71225 16 13.577 71 13.055 00 12.561 10 11.652 30 10.837 77 10.10590 17 14.291 87 13.712 20 13.166 12 12.165 67 11.274 07 10.47726 18 14.992 03 14.353 36 13.753 51 12.659 30 11.689 59 10.82760 19 15.678 46 14.978 89 14.323 80 13.133 94 12.085 32 11.15812 20 16.351 43 15.589 16 14.877 47 13.590 33 12.462 21 11.46992 21 17.011 21 16.184 55 15.415 02 14.029 16 12.821 15 11.76408 .94340 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 .94340 22 17.658 05 16.765 41 15.936 92 14.451 12 13.163 00 12.04158 23 18.292 20 17.332 11 16.443 61 14.856 84 13.488 57 12.30338 24 18.913 93 17.884 99 16.935 54 15.246 96 13.798 64 12.55036 25 19.523 46 18.424 38 17.413 15 15.622 08 14.093 94 12.78336 26 20.121 04 18.950 61 17.876 84 15.982 77 14.375 19 13.00317 27 20.706 90 19.464 01 18.327 03 16.329 59 14.643 03 13.21053 28 21.281 27 19.964 89 18.764 11 16.663 06 14.898 13 13.40616 29 21.844 38 20.453 55 19.188 45 16.983 71 15.141 07 13.59072 30 22.396 46 20.930 29 19.600 44 17.292 03 15.372 45 13.76483 31 22.937 70 21.395 41 20.000 43 17.588 49 15.592 81 13.92909 32 23.468 33 21.849 18 20.388 77 17.873 55 15.802 68 14.08404 33 23.988 56 22.291 88 20.765 79 18.147 65 16.002 55 14.23023 34 24.498 22.723 21.131 18.411 16.192 14.36814 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 59 79 84 20 90 35 24.998 62 23.145 16 21.487 22 18.664 61 16.374 19 14.49825 36 25.488 84 23.556 25 21.832 25 18.908 28 16.546 85 14.62099 37 25.969 45 23.957 32 22.167 24 19.142 58 16.711 29 14.73678 38 26.440 64 24.348 60 22.492 46 19.367 86 16.867 89 14.84602 39 26.902 59 24.730 34 22.808 22 19.584 48 17.017 04 14.94907 40 27.355 48 25.102 78 23.114 77 19.792 77 17.159 09 15.04630 8% 9% 10% 11% 12% 15% (n) Periods .92593 .91743 .90909 .90090 .89286 .86957 1 1.78326 1.7591 1 1.7355 4 1.7125 2 1.6900 5 1.6257 1 2 2.57710 2.5313 0 2.4868 5 2.4437 1 2.4018 3 2.2832 3 3 3.31213 3.2397 2 3.1698 6 3.1024 5 3.0373 5 2.8549 8 4 3.99271 3.8896 5 3.7907 9 3.6959 0 3.6047 8 3.3521 6 5 .94340 Table6.4PRESENT VALUE OF AN ORDINARY ANNUITY OF 1 PVF-OAn,i=11(1+i)ni (n) Periods 2% 2% 3% 4% 5% 6% 1 .98039 .97561 .97087 .96154 .95238 4.62288 4.4859 2 4.3552 6 4.2305 4 4.1114 1 3.7844 8 6 5.20637 5.0329 5 4.8684 2 4.7122 0 4.5637 6 4.1604 2 7 5.74664 5.5348 2 5.3349 3 5.1461 2 4.9676 4 4.4873 2 8 6.24689 5.9952 5 5.7590 2 5.5370 5 5.3282 5 4.7715 8 9 6.71008 6.4176 6 6.1445 7 5.8892 3 5.6502 2 5.0187 7 10 7.13896 6.8051 9 6.4950 6 6.2065 2 5.9377 0 5.2337 1 11 7.53608 7.1607 3 6.8136 9 6.4923 6 6.1943 7 5.4206 2 12 7.90378 7.4869 0 7.1033 6 6.7498 7 6.4235 5 5.5831 5 13 8.24424 7.7861 5 7.3666 9 6.9818 7 6.6281 7 5.7244 8 14 8.55948 8.0606 9 7.6060 8 7.1908 7 6.8108 6 5.8473 7 15 8.85137 8.3125 6 7.8237 1 7.3791 6 6.9739 9 5.9542 4 16 9.12164 8.5436 3 8.0215 5 7.5487 9 7.1196 3 6.0471 6 17 9.37189 8.7556 8.2014 7.7016Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started